Skip to main content
Erschienen in: The Journal of Supercomputing 3/2019

06.02.2018

HPC optimal parallel communication algorithm for the simulation of fractional-order systems

verfasst von: C. Bonchiş, E. Kaslik, F. Roşu

Erschienen in: The Journal of Supercomputing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A parallel numerical simulation algorithm is presented for fractional-order systems involving Caputo-type derivatives, based on the Adams–Bashforth–Moulton predictor–corrector scheme. The parallel algorithm is implemented using several different approaches: a pure MPI version, a combination of MPI with OpenMP optimization and a memory saving speedup approach. All tests run on a BlueGene/P cluster, and comparative improvement results for the running time are provided. As an applied experiment, the solutions of a fractional-order version of a system describing a forced series LCR circuit are numerically computed, depicting cascades of period-doubling bifurcations which lead to the onset of chaotic behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baban A, Bonchiş C, Fikl A, Roşu F (2016) Parallel simulations for fractional-order systems. In: SYNASC 2016, pp 141–144 Baban A, Bonchiş C, Fikl A, Roşu F (2016) Parallel simulations for fractional-order systems. In: SYNASC 2016, pp 141–144
2.
Zurück zum Zitat Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2016) Fractional calculus: models and numerical methods, vol 5. World Scientific, SingaporeCrossRefMATH Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2016) Fractional calculus: models and numerical methods, vol 5. World Scientific, SingaporeCrossRefMATH
3.
Zurück zum Zitat Bonchiş C, Kaslik E, Roşu F (2017) Improved parallel simulations for fractional-order systems using hpc. In: CMMSE 2017 Bonchiş C, Kaslik E, Roşu F (2017) Improved parallel simulations for fractional-order systems using hpc. In: CMMSE 2017
4.
Zurück zum Zitat Cafagna D, Grassi G (2008) Bifurcation and chaos in the fractional-order chen system via a time-domain approach. Int J Bifurc Chaos 18(7):1845–1863MathSciNetCrossRefMATH Cafagna D, Grassi G (2008) Bifurcation and chaos in the fractional-order chen system via a time-domain approach. Int J Bifurc Chaos 18(7):1845–1863MathSciNetCrossRefMATH
6.
Zurück zum Zitat Daftardar-Gejji V, Jafari H (2005) Adomian decomposition: a tool for solving a system of fractional differential equations. J Math Anal Appl 301(2):508–518MathSciNetCrossRefMATH Daftardar-Gejji V, Jafari H (2005) Adomian decomposition: a tool for solving a system of fractional differential equations. J Math Anal Appl 301(2):508–518MathSciNetCrossRefMATH
7.
Zurück zum Zitat Daftardar-Gejji V, Sukale Y, Bhalekar S (2014) A new predictor-corrector method for fractional differential equations. Appl Math Comput 244:158–182MathSciNetMATH Daftardar-Gejji V, Sukale Y, Bhalekar S (2014) A new predictor-corrector method for fractional differential equations. Appl Math Comput 244:158–182MathSciNetMATH
8.
Zurück zum Zitat Deng W (2007) Short memory principle and a predictor-corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188MathSciNetCrossRefMATH Deng W (2007) Short memory principle and a predictor-corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188MathSciNetCrossRefMATH
9.
Zurück zum Zitat Deng W, Li C (2012) Numerical schemes for fractional ordinary differential equations. In: Numerical Modelling. InTech Deng W, Li C (2012) Numerical schemes for fractional ordinary differential equations. In: Numerical Modelling. InTech
10.
Zurück zum Zitat Diethelm K (2011) An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract Calc Appl Anal 14(3):475–490MathSciNetCrossRefMATH Diethelm K (2011) An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract Calc Appl Anal 14(3):475–490MathSciNetCrossRefMATH
11.
Zurück zum Zitat Diethelm K, Ford N, Freed A (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22MathSciNetCrossRefMATH Diethelm K, Ford N, Freed A (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22MathSciNetCrossRefMATH
12.
Zurück zum Zitat Duan JS, Rach R, Baleanu D, Wazwaz AM (2012) A review of the adomian decomposition method and its applications to fractional differential equations. Commun Fract Cal 3(2):73–99 Duan JS, Rach R, Baleanu D, Wazwaz AM (2012) A review of the adomian decomposition method and its applications to fractional differential equations. Commun Fract Cal 3(2):73–99
13.
Zurück zum Zitat Ford NJ, Simpson AC (2001) The numerical solution of fractional differential equations: speed versus accuracy. Numer Algorithms 26(4):333–346MathSciNetCrossRefMATH Ford NJ, Simpson AC (2001) The numerical solution of fractional differential equations: speed versus accuracy. Numer Algorithms 26(4):333–346MathSciNetCrossRefMATH
14.
Zurück zum Zitat Galeone L, Garrappa R (2009) Explicit methods for fractional differential equations and their stability properties. J Comput Appl Math 228(2):548–560MathSciNetCrossRefMATH Galeone L, Garrappa R (2009) Explicit methods for fractional differential equations and their stability properties. J Comput Appl Math 228(2):548–560MathSciNetCrossRefMATH
15.
Zurück zum Zitat Garrappa R (2010) On linear stability of predictor-corrector algorithms for fractional differential equations. Int J Comput Math 87(10):2281–2290MathSciNetCrossRefMATH Garrappa R (2010) On linear stability of predictor-corrector algorithms for fractional differential equations. Int J Comput Math 87(10):2281–2290MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gong C, Bao W, Tang G, Yang B, Liu J (2014) An efficient parallel solution for caputo fractional reaction–diffusion equation. J Supercomput 68(3):1521–1537CrossRef Gong C, Bao W, Tang G, Yang B, Liu J (2014) An efficient parallel solution for caputo fractional reaction–diffusion equation. J Supercomput 68(3):1521–1537CrossRef
17.
Zurück zum Zitat Palanivel J, Suresh K, Sabarathinam S, Thamilmaran K (2017) Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator. Chaos Solitons Fractals 95:33–41MathSciNetCrossRefMATH Palanivel J, Suresh K, Sabarathinam S, Thamilmaran K (2017) Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator. Chaos Solitons Fractals 95:33–41MathSciNetCrossRefMATH
18.
Zurück zum Zitat Pedas A, Tamme E (2011) Spline collocation methods for linear multi-term fractional differential equations. J Comput Appl Math 236(2):167–176MathSciNetCrossRefMATH Pedas A, Tamme E (2011) Spline collocation methods for linear multi-term fractional differential equations. J Comput Appl Math 236(2):167–176MathSciNetCrossRefMATH
19.
Zurück zum Zitat Redbooks I (2009) IBM System Blue Gene Solution: Blue Gene/P Application Development. Vervante Redbooks I (2009) IBM System Blue Gene Solution: Blue Gene/P Application Development. Vervante
20.
Zurück zum Zitat Song L, Wang W (2013) A new improved adomian decomposition method and its application to fractional differential equations. Appl Math Model 37(3):1590–1598MathSciNetCrossRefMATH Song L, Wang W (2013) A new improved adomian decomposition method and its application to fractional differential equations. Appl Math Model 37(3):1590–1598MathSciNetCrossRefMATH
21.
Zurück zum Zitat Zhang W, Cai X (2012) Efficient implementations of the adams-bashforth-moulton method for solving fractional differential equations. In: Proceedings of FDA12 Zhang W, Cai X (2012) Efficient implementations of the adams-bashforth-moulton method for solving fractional differential equations. In: Proceedings of FDA12
22.
Zurück zum Zitat Zhang W, Wei W, Cai X (2014) Performance modeling of serial and parallel implementations of the fractional adams–bashforth–moulton method. Fract Cal Appl Anal 17(3):617–637MathSciNetMATH Zhang W, Wei W, Cai X (2014) Performance modeling of serial and parallel implementations of the fractional adams–bashforth–moulton method. Fract Cal Appl Anal 17(3):617–637MathSciNetMATH
Metadaten
Titel
HPC optimal parallel communication algorithm for the simulation of fractional-order systems
verfasst von
C. Bonchiş
E. Kaslik
F. Roşu
Publikationsdatum
06.02.2018
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 3/2019
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-018-2267-z

Weitere Artikel der Ausgabe 3/2019

The Journal of Supercomputing 3/2019 Zur Ausgabe

Premium Partner