Skip to main content
Erschienen in: Autonomous Robots 5/2018

07.11.2017

Human robot cooperation with compliance adaptation along the motion trajectory

verfasst von: Bojan Nemec, Nejc Likar, Andrej Gams, Aleš Ude

Erschienen in: Autonomous Robots | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we propose a novel approach for intuitive and natural physical human–robot interaction in cooperative tasks. Through initial learning by demonstration, robot behavior naturally evolves into a cooperative task, where the human co-worker is allowed to modify both the spatial course of motion as well as the speed of execution at any stage. The main feature of the proposed adaptation scheme is that the robot adjusts its stiffness in path operational space, defined with a Frenet–Serret frame. Furthermore, the required dynamic capabilities of the robot are obtained by decoupling the robot dynamics in operational space, which is attached to the desired trajectory. Speed-scaled dynamic motion primitives are applied for the underlying task representation. The combination allows a human co-worker in a cooperative task to be less precise in parts of the task that require high precision, as the precision aspect is learned and provided by the robot. The user can also freely change the speed and/or the trajectory by simply applying force to the robot. The proposed scheme was experimentally validated on three illustrative tasks. The first task demonstrates novel two-stage learning by demonstration, where the spatial part of the trajectory is demonstrated independently from the velocity part. The second task shows how parts of the trajectory can be rapidly and significantly changed in one execution. The final experiment shows two Kuka LWR-4 robots in a bi-manual setting cooperating with a human while carrying an object.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adorno, B. V., Bó A. P. L., Fraisse, P., & Poignet, P. (2011). Towards a cooperative framework for interactive manipulation involving a human and a humanoid. In International conference on robotics and automation (ICRA) (pp. 3777–3783). Adorno, B. V., Bó A. P. L., Fraisse, P., & Poignet, P. (2011). Towards a cooperative framework for interactive manipulation involving a human and a humanoid. In International conference on robotics and automation (ICRA) (pp. 3777–3783).
Zurück zum Zitat Adorno, B., Fraisse, P., & Druon, S. (2010). Dual position control strategies using the cooperative dual task-space framework. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, Taiwan (pp. 3955–3960). Adorno, B., Fraisse, P., & Druon, S. (2010). Dual position control strategies using the cooperative dual task-space framework. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, Taiwan (pp. 3955–3960).
Zurück zum Zitat Albu-Schaffer, A., Ott, C., & Hirzinger, G. (2004). A passivity based Cartesian impedance controller for flexible joint robots—part II: Full state feedback, impedance design and experiments. In IEEE international conference on robotics and automation, 2004 proceedings ICRA ’04 2004 3(5) (pp. 2659–2665). Albu-Schaffer, A., Ott, C., & Hirzinger, G. (2004). A passivity based Cartesian impedance controller for flexible joint robots—part II: Full state feedback, impedance design and experiments. In IEEE international conference on robotics and automation, 2004 proceedings ICRA ’04 2004 3(5) (pp. 2659–2665).
Zurück zum Zitat Albu-Schaffer, A., Ott, C., & Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research, 26(1), 23–39.CrossRefMATH Albu-Schaffer, A., Ott, C., & Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research, 26(1), 23–39.CrossRefMATH
Zurück zum Zitat Amor, H. B., Neumann, G., Kamthe, S., Kroemer, O., & Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 2831–2837). Amor, H. B., Neumann, G., Kamthe, S., Kroemer, O., & Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 2831–2837).
Zurück zum Zitat Caccavale, F., Chiacchio, P., & Chiaverini, S. (2000). Task-space regulation of cooperative manipulators. Automatica, 36, 879–887.MathSciNetCrossRefMATH Caccavale, F., Chiacchio, P., & Chiaverini, S. (2000). Task-space regulation of cooperative manipulators. Automatica, 36, 879–887.MathSciNetCrossRefMATH
Zurück zum Zitat Calinon, S., Bruno, D., & Caldwell, D. G. (2014). A task-parameterized probabilistic model with minimal intervention control. In IEEE international conference on robotics and automation (ICRA), Hong Kong (pp. 3339–3344). Calinon, S., Bruno, D., & Caldwell, D. G. (2014). A task-parameterized probabilistic model with minimal intervention control. In IEEE international conference on robotics and automation (ICRA), Hong Kong (pp. 3339–3344).
Zurück zum Zitat Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G., & Caldwell, D. G. (2012). Statistical dynamical systems for skills acquisition in humanoids. In 12th IEEE-RAS international conference on humanoid robots (humanoids), Osaka, Japan (pp. 323–329). Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N. G., & Caldwell, D. G. (2012). Statistical dynamical systems for skills acquisition in humanoids. In 12th IEEE-RAS international conference on humanoid robots (humanoids), Osaka, Japan (pp. 323–329).
Zurück zum Zitat Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010). Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254). Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010). Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254).
Zurück zum Zitat Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Chapter 11: Kinematically redundant manipulators. Springer Handbook of Robotics (pp. 245–268). Berlin Heidelberg: Springer. Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Chapter 11: Kinematically redundant manipulators. Springer Handbook of Robotics (pp. 245–268). Berlin Heidelberg: Springer.
Zurück zum Zitat Evrard, P., Mansard, N., Stasse, O., Kheddar, A., Schauss, T., Weber, C., Peer, A., & Buss, M. (2009). Intercontinental, multimodal, wide-range telecooperation using a humanoid robot. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 5635–5640). Evrard, P., Mansard, N., Stasse, O., Kheddar, A., Schauss, T., Weber, C., Peer, A., & Buss, M. (2009). Intercontinental, multimodal, wide-range telecooperation using a humanoid robot. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 5635–5640).
Zurück zum Zitat Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., & Maeda, G. (2015). Learning multiple collaborative tasks with a mixture of interaction primitives. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1535–1542). Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., & Maeda, G. (2015). Learning multiple collaborative tasks with a mixture of interaction primitives. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1535–1542).
Zurück zum Zitat Faber, M., Bützler, J., & Schlick, C. M. (2015). Human–robot cooperation in future production systems: Analysis of requirements for designing an ergonomic work system. Procedia Manufacturing, 3, 510–517.CrossRef Faber, M., Bützler, J., & Schlick, C. M. (2015). Human–robot cooperation in future production systems: Analysis of requirements for designing an ergonomic work system. Procedia Manufacturing, 3, 510–517.CrossRef
Zurück zum Zitat Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.CrossRef Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.CrossRef
Zurück zum Zitat Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling movement primitives: Interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 30(4), 816–830.CrossRef Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling movement primitives: Interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 30(4), 816–830.CrossRef
Zurück zum Zitat Gams, A., Petrič, T., Do, M., Nemec, B., Morimoto, J., Asfour, T., et al. (2016). Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robotics and Autonomous Systems, 75(Part B), 340–351.CrossRef Gams, A., Petrič, T., Do, M., Nemec, B., Morimoto, J., Asfour, T., et al. (2016). Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robotics and Autonomous Systems, 75(Part B), 340–351.CrossRef
Zurück zum Zitat Hatanaka, T., Chopra, N., & Spong, M. W. (2015). Passivity-based control of robots: Historical perspective and contemporary issues. In Conference on decision and control (CDC) (pp. 2450–2452). Hatanaka, T., Chopra, N., & Spong, M. W. (2015). Passivity-based control of robots: Historical perspective and contemporary issues. In Conference on decision and control (CDC) (pp. 2450–2452).
Zurück zum Zitat Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–73.MathSciNetCrossRefMATH Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–73.MathSciNetCrossRefMATH
Zurück zum Zitat Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef
Zurück zum Zitat Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3, 43–53.CrossRef Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3, 43–53.CrossRef
Zurück zum Zitat Knuth, D. E. (1997). The Art of computer programming, (3rd ed., Vol. 2). Inc, Boston, MA, USA: Seminumerical Algorithms. Addison-Wesley Longman Publishing Co. Knuth, D. E. (1997). The Art of computer programming, (3rd ed., Vol. 2). Inc, Boston, MA, USA: Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.
Zurück zum Zitat Krebs, H. I., Hogan, N., Aisen, M. L., & Volpe, B. T. (1998). Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 6(December), 75–87.CrossRef Krebs, H. I., Hogan, N., Aisen, M. L., & Volpe, B. T. (1998). Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, 6(December), 75–87.CrossRef
Zurück zum Zitat Likar, N., Nemec, B., Zlajpah, L., Ando, S., & Ude, A. (2015). Adaptation of bimanual assembly tasks using iterative learning framework. IEEE-RAS international conference on humanoid robots (humanoids), Seoul, Korea (pp. 771–776). Likar, N., Nemec, B., Zlajpah, L., Ando, S., & Ude, A. (2015). Adaptation of bimanual assembly tasks using iterative learning framework. IEEE-RAS international conference on humanoid robots (humanoids), Seoul, Korea (pp. 771–776).
Zurück zum Zitat Mortl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., & Hirche, S. (2012). The role of roles: Physical cooperation between humans and robots. The International Journal of Robotics Research, 31(13), 1656–1674.CrossRef Mortl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., & Hirche, S. (2012). The role of roles: Physical cooperation between humans and robots. The International Journal of Robotics Research, 31(13), 1656–1674.CrossRef
Zurück zum Zitat Nemec, B., Gams, A., & Ude, A. (2013). Velocity adaptation for self-improvement of skills learned from user demonstrations. IEEE-RAS International conference on humanoid robots (humanoids), Atlanta, USA (pp. 423–428). Nemec, B., Gams, A., & Ude, A. (2013). Velocity adaptation for self-improvement of skills learned from user demonstrations. IEEE-RAS International conference on humanoid robots (humanoids), Atlanta, USA (pp. 423–428).
Zurück zum Zitat Nemec, B., Likar, N., Gams, A., & Ude, A. (2016a). Adaptive human robot cooperation scheme for bimanual robots. In J. Lenarcic & J. Merlet (Eds.), Advances in robot kinematics (pp. 385–393). Rocquencourt: INRIA. Nemec, B., Likar, N., Gams, A., & Ude, A. (2016a). Adaptive human robot cooperation scheme for bimanual robots. In J. Lenarcic & J. Merlet (Eds.), Advances in robot kinematics (pp. 385–393). Rocquencourt: INRIA.
Zurück zum Zitat Nemec, B., Likar, N., Gams, A., & Ude, A. (2016b) Bimanual human robot cooperation with adaptive stiffness control. In 16th IEEE-RAS International Conference on Humanoid Robots, Cancun, Mexico (pp. 607–613). Nemec, B., Likar, N., Gams, A., & Ude, A. (2016b) Bimanual human robot cooperation with adaptive stiffness control. In 16th IEEE-RAS International Conference on Humanoid Robots, Cancun, Mexico (pp. 607–613).
Zurück zum Zitat Ott, C., Albu-Schaffer, A., Kugi, A., Stramigioli, S., & Hirzinger, G. (2004). A passivity based cartesian impedance controller for flexible joint robots-part I: Torque feedback and gravity compensation. In IEEE international conference on robotics & automation (pp. 2659–2665). Ott, C., Albu-Schaffer, A., Kugi, A., Stramigioli, S., & Hirzinger, G. (2004). A passivity based cartesian impedance controller for flexible joint robots-part I: Torque feedback and gravity compensation. In IEEE international conference on robotics & automation (pp. 2659–2665).
Zurück zum Zitat Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013). Probabilistic movement primitives. Neural Information Processing Systems, 26, 2616–2624. Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013). Probabilistic movement primitives. Neural Information Processing Systems, 26, 2616–2624.
Zurück zum Zitat Park, H. A., & Lee, C. S. G. (2015). Extended cooperative task space for manipulation tasks of humanoid robots. In IEEE international conference on robotics and automation (ICRA), Seattle, WA (pp. 6088–6093). Park, H. A., & Lee, C. S. G. (2015). Extended cooperative task space for manipulation tasks of humanoid robots. In IEEE international conference on robotics and automation (ICRA), Seattle, WA (pp. 6088–6093).
Zurück zum Zitat Raiola, G., Lamy, X., & Stulp, F. (2015). Co-manipulation with multiple probabilistic virtual guides. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 7–13). Raiola, G., Lamy, X., & Stulp, F. (2015). Co-manipulation with multiple probabilistic virtual guides. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 7–13).
Zurück zum Zitat Ravani, R., & Meghdari, A. (2006). Velocity distribution profile for robot arm motion using rational Frenet–Serret curves. Informatica, 17(1), 69–84.MathSciNetMATH Ravani, R., & Meghdari, A. (2006). Velocity distribution profile for robot arm motion using rational Frenet–Serret curves. Informatica, 17(1), 69–84.MathSciNetMATH
Zurück zum Zitat Rozo, L., Calinon, S., Caldwell, D. G., Jimnez, P., & Torras, C. (2016). Learning physical collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics, 32(3), 513–527.CrossRef Rozo, L., Calinon, S., Caldwell, D. G., Jimnez, P., & Torras, C. (2016). Learning physical collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics, 32(3), 513–527.CrossRef
Zurück zum Zitat Salehian, S. S. M., Khoramshahi, M., & Billard, A. (2016). A dynamical system approach for softly catching a flying object: Theory and experiment. IEEE Transactions on Robotics, 32(2), 462–471.CrossRef Salehian, S. S. M., Khoramshahi, M., & Billard, A. (2016). A dynamical system approach for softly catching a flying object: Theory and experiment. IEEE Transactions on Robotics, 32(2), 462–471.CrossRef
Zurück zum Zitat Soler, T., & Chin, M. (1985). On transformation of covariance matrices between local cartesian coordinate systems and commutative diagrams. In Proceedings of 45th Annual Meeting ACSM-ACSM Convention (pp. 393–406). Soler, T., & Chin, M. (1985). On transformation of covariance matrices between local cartesian coordinate systems and commutative diagrams. In Proceedings of 45th Annual Meeting ACSM-ACSM Convention (pp. 393–406).
Zurück zum Zitat Soyama, R., Ishii, S., & Fukase, A. (2004). Selectable operating interfaces of the meal-assistance device “my spoon”. In Z. Bien & D. Stefanov (Eds.), Rehabilitation (pp. 155–163). Berlin: Springer. Soyama, R., Ishii, S., & Fukase, A. (2004). Selectable operating interfaces of the meal-assistance device “my spoon”. In Z. Bien & D. Stefanov (Eds.), Rehabilitation (pp. 155–163). Berlin: Springer.
Zurück zum Zitat Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.CrossRef Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.CrossRef
Zurück zum Zitat Ude, A., Nemec, B., Petrič, T., & Morimoto, J. (2014). Orientation in cartesian space dynamic movement primitives. IEEE international conference on robotics and automation (ICRA), Hong Kong, China (pp. 2997–3004). Ude, A., Nemec, B., Petrič, T., & Morimoto, J. (2014). Orientation in cartesian space dynamic movement primitives. IEEE international conference on robotics and automation (ICRA), Hong Kong, China (pp. 2997–3004).
Zurück zum Zitat Zhang, J., & Cheah, C. C. (2015). Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots. IEEE Transactions on Robotics, 31(2), 233–245.CrossRef Zhang, J., & Cheah, C. C. (2015). Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots. IEEE Transactions on Robotics, 31(2), 233–245.CrossRef
Metadaten
Titel
Human robot cooperation with compliance adaptation along the motion trajectory
verfasst von
Bojan Nemec
Nejc Likar
Andrej Gams
Aleš Ude
Publikationsdatum
07.11.2017
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 5/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9676-3

Weitere Artikel der Ausgabe 5/2018

Autonomous Robots 5/2018 Zur Ausgabe

Neuer Inhalt