Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2020

10.04.2020 | Research Paper

Hybrid algorithms for handling the numerical noise in topology optimization

verfasst von: Pooya Rostami, Javad Marzbanrad

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents new hybrid methods for the identification of optimal topologies by combining the teaching–learning based optimization (TLBO) and the method of moving asymptotes (MMA). The topology optimization problem is parameterizing with a low dimensional explicit method called moving morphable components (MMC), to make the use of evolutionary algorithms more efficient. Gradient-based solvers have good performance in solving large-scale topology optimization problems. However, in unconventional cases same as crashworthiness design in which there is numerical noise in the gradient information, the uses of these algorithms are unsuitable. The standard evolutionary algorithms can solve such problems since they don’t need gradient information. However, they have a high computational cost. This paper is based upon the idea of combining metaheuristics with mathematical programming to handle the probable noises and have faster convergence speed. Due to the ease of computations, the compliance minimization problem is considered as the case study and the artificial noise is added in gradient information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu, D., Zhan, W.: Topology optimization of a 6-DOF spatial compliant mechanism based on Stewart propotype platform. Acta. Mech. Sin. 35, 1044–1059 (2019)MathSciNet Zhu, D., Zhan, W.: Topology optimization of a 6-DOF spatial compliant mechanism based on Stewart propotype platform. Acta. Mech. Sin. 35, 1044–1059 (2019)MathSciNet
2.
Zurück zum Zitat Bendsøe, M.P.: Topology optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization. Springer, Boston, pp. 2636–2638 (2001) Bendsøe, M.P.: Topology optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization. Springer, Boston, pp. 2636–2638 (2001)
3.
Zurück zum Zitat Sigmund, O.A.: 99-line topology optimization code written in Matlab. J. Struct. Multidiscip. Optim. 21, 120–127 (2001) Sigmund, O.A.: 99-line topology optimization code written in Matlab. J. Struct. Multidiscip. Optim. 21, 120–127 (2001)
4.
Zurück zum Zitat Tavakoli, R.: Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. J. Comput. Methods Appl. Mech. Eng. 276, 534–565 (2014)MathSciNetMATH Tavakoli, R.: Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. J. Comput. Methods Appl. Mech. Eng. 276, 534–565 (2014)MathSciNetMATH
5.
Zurück zum Zitat Huang, G., Chen, X., Yang, Z.: A modified gradient projection method for static and dynamic topology optimization. J. Eng. Optim. 50, 1515–1532 (2018)MathSciNet Huang, G., Chen, X., Yang, Z.: A modified gradient projection method for static and dynamic topology optimization. J. Eng. Optim. 50, 1515–1532 (2018)MathSciNet
6.
Zurück zum Zitat Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetMATH Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetMATH
7.
Zurück zum Zitat Behrou, R., Guest, J.K.: Topology optimization for transient response of structures subjected to dynamic loads. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 3657 (2017) Behrou, R., Guest, J.K.: Topology optimization for transient response of structures subjected to dynamic loads. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 3657 (2017)
8.
Zurück zum Zitat Li, L., Khandelwal, K.: Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. J. Comput. Struct. 131, 34–45 (2014) Li, L., Khandelwal, K.: Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. J. Comput. Struct. 131, 34–45 (2014)
9.
Zurück zum Zitat Huang, X., Xie, M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, Hoboken (2010)MATH Huang, X., Xie, M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, Hoboken (2010)MATH
10.
Zurück zum Zitat Aulig, N.: Generic Topology Optimization Based on Local State Features, vol. 468. VDI Verlag, Düsseldorf (2017) Aulig, N.: Generic Topology Optimization Based on Local State Features, vol. 468. VDI Verlag, Düsseldorf (2017)
11.
Zurück zum Zitat Gomes, A.A., Suleman, A.: Application of spectral level set methodology in topology optimization. J. Struct. Multidiscip. Optim. 31, 430–443 (2006)MathSciNetMATH Gomes, A.A., Suleman, A.: Application of spectral level set methodology in topology optimization. J. Struct. Multidiscip. Optim. 31, 430–443 (2006)MathSciNetMATH
12.
Zurück zum Zitat Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. J. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetMATH Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. J. Struct. Multidiscip. Optim. 43, 589–596 (2011)MathSciNetMATH
13.
Zurück zum Zitat Kita, E., Tanie, H.: Topology and shape optimization of continuum structures using GA and BEM. J. Struct. Optim. 17, 130–139 (1999) Kita, E., Tanie, H.: Topology and shape optimization of continuum structures using GA and BEM. J. Struct. Optim. 17, 130–139 (1999)
14.
Zurück zum Zitat Wang, N., Zhang, X.: Compliant mechanisms design based on pairs of curves. J. Sci. China Technol. Sci 55, 2099–2106 (2012) Wang, N., Zhang, X.: Compliant mechanisms design based on pairs of curves. J. Sci. China Technol. Sci 55, 2099–2106 (2012)
15.
Zurück zum Zitat Wang, S.Y., Tai, K.: A bit-array representation GA for structural topology optimization. In: 2003 Congress on Evolutionary Computation, CEC’03, pp. 671–677 (2003) Wang, S.Y., Tai, K.: A bit-array representation GA for structural topology optimization. In: 2003 Congress on Evolutionary Computation, CEC’03, pp. 671–677 (2003)
16.
Zurück zum Zitat Tai, K., Chee, T.H.: Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J. Mech. Des. 122, 560–566 (2000) Tai, K., Chee, T.H.: Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J. Mech. Des. 122, 560–566 (2000)
17.
Zurück zum Zitat Wang, S.Y., Tai, K., Wang, M.Y.: An enhanced genetic algorithm for structural topology optimization. Int. J. Numer. Methods Eng. 65, 18–44 (2006)MATH Wang, S.Y., Tai, K., Wang, M.Y.: An enhanced genetic algorithm for structural topology optimization. Int. J. Numer. Methods Eng. 65, 18–44 (2006)MATH
18.
Zurück zum Zitat Zhou, H.: Topology optimization of compliant mechanisms using hybrid discretization model. J. Mech. Des. 132, 111003 (2010) Zhou, H.: Topology optimization of compliant mechanisms using hybrid discretization model. J. Mech. Des. 132, 111003 (2010)
19.
Zurück zum Zitat Kaveh, A., Hassani, B., Shojaee, S., et al.: Structural topology optimization using ant colony methodology. Eng. Struct. 30, 2559–2565 (2008) Kaveh, A., Hassani, B., Shojaee, S., et al.: Structural topology optimization using ant colony methodology. Eng. Struct. 30, 2559–2565 (2008)
20.
Zurück zum Zitat Madeira, J.A., Rodrigues, H.C., Pina, H.: Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. J. Struct. Multidiscip. Optim. 32, 31–39 (2006) Madeira, J.A., Rodrigues, H.C., Pina, H.: Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. J. Struct. Multidiscip. Optim. 32, 31–39 (2006)
21.
Zurück zum Zitat Padhye, N.: Topology optimization of compliant mechanism using multi-objective particle swarm optimization. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1831–1834 (2008) Padhye, N.: Topology optimization of compliant mechanism using multi-objective particle swarm optimization. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1831–1834 (2008)
22.
Zurück zum Zitat Kobayashi, M.H.: On a biologically inspired topology optimization method. J. Commun. Nonlinear Sci. Numer. Simul. 15, 787–802 (2010)MathSciNetMATH Kobayashi, M.H.: On a biologically inspired topology optimization method. J. Commun. Nonlinear Sci. Numer. Simul. 15, 787–802 (2010)MathSciNetMATH
23.
Zurück zum Zitat Sabbatini, E., Revel, G.M., Kobayashi, M.H.: Vibration reduction using biologically inspired topology optimization method: optimal stiffeners distribution on an acoustically excited plate. J. Vib. Control 21, 1398–1412 (2015)MathSciNet Sabbatini, E., Revel, G.M., Kobayashi, M.H.: Vibration reduction using biologically inspired topology optimization method: optimal stiffeners distribution on an acoustically excited plate. J. Vib. Control 21, 1398–1412 (2015)MathSciNet
24.
Zurück zum Zitat Wu, C.Y., Tseng, K.Y.: Topology optimization of structures using modified binary differential evolution. J. Struct. Multidiscip. Optim. 42, 939–953 (2010) Wu, C.Y., Tseng, K.Y.: Topology optimization of structures using modified binary differential evolution. J. Struct. Multidiscip. Optim. 42, 939–953 (2010)
25.
Zurück zum Zitat Zhou, H., Ting, K.L.: Shape and size synthesis of compliant mechanisms using wide curve theory. J. Mech. Des. 128, 551–558 (2006) Zhou, H., Ting, K.L.: Shape and size synthesis of compliant mechanisms using wide curve theory. J. Mech. Des. 128, 551–558 (2006)
26.
Zurück zum Zitat Guirguis, D., Aly, M.F.: A derivative-free level-set method for topology optimization. J. Finite Elem. Anal. Des. 120, 41–56 (2016)MathSciNet Guirguis, D., Aly, M.F.: A derivative-free level-set method for topology optimization. J. Finite Elem. Anal. Des. 120, 41–56 (2016)MathSciNet
27.
Zurück zum Zitat Luh, G.C., Chueh, C.H.: Multi-modal topological optimization of structure using immune algorithm. J. Comput. Methods Appl. Mech. Eng. 193, 4035–4055 (2004)MATH Luh, G.C., Chueh, C.H.: Multi-modal topological optimization of structure using immune algorithm. J. Comput. Methods Appl. Mech. Eng. 193, 4035–4055 (2004)MATH
28.
Zurück zum Zitat Campelo, F., Watanabe, K., Igarashi, H.: 3D topology optimization using an immune algorithm. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 26, 677–688 (2007)MATH Campelo, F., Watanabe, K., Igarashi, H.: 3D topology optimization using an immune algorithm. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 26, 677–688 (2007)MATH
29.
Zurück zum Zitat Bureerat, S., Limtragool, J.: Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem. Anal. Des. 42, 547–566 (2006)MathSciNet Bureerat, S., Limtragool, J.: Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem. Anal. Des. 42, 547–566 (2006)MathSciNet
30.
Zurück zum Zitat Bureerat, S., Limtragool, J.: Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem. Anal. Des. 44, 738–747 (2008) Bureerat, S., Limtragool, J.: Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem. Anal. Des. 44, 738–747 (2008)
31.
Zurück zum Zitat Sleesongsom, S., Bureerat, S.: Topology optimisation using MPBILs and multi-grid ground element. J. Appl. Sci. 8, 271 (2018) Sleesongsom, S., Bureerat, S.: Topology optimisation using MPBILs and multi-grid ground element. J. Appl. Sci. 8, 271 (2018)
32.
Zurück zum Zitat Gomes, A.A., Suleman, A.: Topology optimization of a reinforced wing box for enhanced roll maneuvers. Aiaa J 46, 548–556 (2008) Gomes, A.A., Suleman, A.: Topology optimization of a reinforced wing box for enhanced roll maneuvers. Aiaa J 46, 548–556 (2008)
33.
Zurück zum Zitat Aulig, N., Olhofer, M.: Evolutionary computation for topology optimization of mechanical structures: an overview of representations. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1948–1955 (2016) Aulig, N., Olhofer, M.: Evolutionary computation for topology optimization of mechanical structures: an overview of representations. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1948–1955 (2016)
34.
Zurück zum Zitat Bochenek, B., Tajs-Zieli´nska, K.: Novel local rules of cellular automata applied to topology and size optimization. J. Eng. Optim. 44, 23–35 (2012) Bochenek, B., Tajs-Zieli´nska, K.: Novel local rules of cellular automata applied to topology and size optimization. J. Eng. Optim. 44, 23–35 (2012)
35.
Zurück zum Zitat Hunkeler, S.: Topology optimisation in crashworthiness design via hybrid cellular automata for thin walled structures, [Ph.D. Thesis], Queen Mary University of London (2014) Hunkeler, S.: Topology optimisation in crashworthiness design via hybrid cellular automata for thin walled structures, [Ph.D. Thesis], Queen Mary University of London (2014)
36.
Zurück zum Zitat Hunkeler, S., Duddeck, F., Rayamajhi, M.: Topology optimisation method for crashworthiness design using hybrid cellular automata and thin-walled ground structures. In: 9th Europ LS-DYNA Conf., Manchester (2013) Hunkeler, S., Duddeck, F., Rayamajhi, M.: Topology optimisation method for crashworthiness design using hybrid cellular automata and thin-walled ground structures. In: 9th Europ LS-DYNA Conf., Manchester (2013)
37.
Zurück zum Zitat Duddeck, F., Hunkeler, S., Lozano, P., et al.: Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. J. Struct. Multidiscip. Optim. 54, 415–428 (2016) Duddeck, F., Hunkeler, S., Lozano, P., et al.: Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. J. Struct. Multidiscip. Optim. 54, 415–428 (2016)
38.
Zurück zum Zitat Zeng, D., Duddeck, F.: Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. J. Struct. Multidiscip. Optim. 56, 101–115 (2017)MathSciNet Zeng, D., Duddeck, F.: Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. J. Struct. Multidiscip. Optim. 56, 101–115 (2017)MathSciNet
39.
Zurück zum Zitat Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetMATH Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetMATH
40.
Zurück zum Zitat Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)MathSciNetMATH Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)MathSciNetMATH
41.
Zurück zum Zitat Wei, P., Li, Z., Li, X., et al.: An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. J. Struct. Multidiscip. Optim. 58, 831–849 (2018)MathSciNet Wei, P., Li, Z., Li, X., et al.: An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. J. Struct. Multidiscip. Optim. 58, 831–849 (2018)MathSciNet
42.
Zurück zum Zitat Yulin, M., Xiaoming, W.: A level set method for structural topology optimization with multi-constraints and multi-materials. J. Acta Mech. Sin. 20, 507–518 (2004)MathSciNet Yulin, M., Xiaoming, W.: A level set method for structural topology optimization with multi-constraints and multi-materials. J. Acta Mech. Sin. 20, 507–518 (2004)MathSciNet
43.
Zurück zum Zitat Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017) Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)
44.
Zurück zum Zitat Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)MathSciNetMATH Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)MathSciNetMATH
45.
Zurück zum Zitat Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014) Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)
46.
Zurück zum Zitat Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016) Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)
47.
Zurück zum Zitat Xue, R., Liu, C., Zhang, W., et al.: Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 344, 798–818 (2019)MathSciNetMATH Xue, R., Liu, C., Zhang, W., et al.: Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 344, 798–818 (2019)MathSciNetMATH
48.
Zurück zum Zitat Zhang, W., Zhou, J., Zhu, Y., et al.: Structural complexity control in topology optimization via moving morphable component (MMC) approach. J. Struct. Multidiscip. Optim. 56, 535–552 (2017)MathSciNet Zhang, W., Zhou, J., Zhu, Y., et al.: Structural complexity control in topology optimization via moving morphable component (MMC) approach. J. Struct. Multidiscip. Optim. 56, 535–552 (2017)MathSciNet
49.
Zurück zum Zitat Zhang, W., Li, D., Zhou, J., et al.: A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. J. Comput. Methods Appl. Mech. Eng. 334, 381–413 (2018)MathSciNetMATH Zhang, W., Li, D., Zhou, J., et al.: A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. J. Comput. Methods Appl. Mech. Eng. 334, 381–413 (2018)MathSciNetMATH
50.
Zurück zum Zitat Zhang, W., Song, J., Zhou, J., et al.: Topology optimization with multiple materials via moving morphable component (MMC) method. J. Comput. Methods Appl. Mech. Eng. 113, 1653–1675 (2018)MathSciNet Zhang, W., Song, J., Zhou, J., et al.: Topology optimization with multiple materials via moving morphable component (MMC) method. J. Comput. Methods Appl. Mech. Eng. 113, 1653–1675 (2018)MathSciNet
51.
Zurück zum Zitat Liu, C., Zhu, Y., Sun, Z., et al.: An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. J. Struct. Multidiscip. Optim. 58, 2455–2479 (2018)MathSciNet Liu, C., Zhu, Y., Sun, Z., et al.: An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. J. Struct. Multidiscip. Optim. 58, 2455–2479 (2018)MathSciNet
52.
Zurück zum Zitat Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. J. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetMATH Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. J. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetMATH
53.
Zurück zum Zitat Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. J. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)MathSciNetMATH Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. J. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)MathSciNetMATH
54.
Zurück zum Zitat Liu, C., Du, Z., Zhang, W., et al.: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J. Appl. Mech. 84, 081008 (2017) Liu, C., Du, Z., Zhang, W., et al.: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J. Appl. Mech. 84, 081008 (2017)
55.
Zurück zum Zitat Zhang, W., Li, D., Kang, P., et al.: Explicit topology optimization using IGA-based moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 360, 112685 (2019)MathSciNetMATH Zhang, W., Li, D., Kang, P., et al.: Explicit topology optimization using IGA-based moving morphable void (MMV) approach. J. Comput. Methods Appl. Mech. Eng. 360, 112685 (2019)MathSciNetMATH
56.
Zurück zum Zitat Marzbanrad, J., Hoseinpour, A.: Structural optimization of MacPherson control arm under fatigue loading. J. Tehnički Vjesnik 24, 917–924 (2017) Marzbanrad, J., Hoseinpour, A.: Structural optimization of MacPherson control arm under fatigue loading. J. Tehnički Vjesnik 24, 917–924 (2017)
57.
Zurück zum Zitat Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. J. Comput.-Aided Des. 43, 303–315 (2011) Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. J. Comput.-Aided Des. 43, 303–315 (2011)
58.
Zurück zum Zitat Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. J. Inf. Sci. 183, 1–15 (2012)MathSciNet Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. J. Inf. Sci. 183, 1–15 (2012)MathSciNet
59.
Zurück zum Zitat Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE Evolutionary Computation International Conference, pp. 312–317 (1996) Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE Evolutionary Computation International Conference, pp. 312–317 (1996)
60.
Zurück zum Zitat Bujny, M., Aulig, N., Olhofer, M., et al.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness 23, 395–416 (2018) Bujny, M., Aulig, N., Olhofer, M., et al.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness 23, 395–416 (2018)
61.
Zurück zum Zitat Bujny, M., Aulig, N., Olhofer, M., et al.: Hybrid evolutionary approach for level set topology optimization. In: Evolutionary Computation (CEC), 2016 IEEE Congress, pp. 5092–5099 (2016) Bujny, M., Aulig, N., Olhofer, M., et al.: Hybrid evolutionary approach for level set topology optimization. In: Evolutionary Computation (CEC), 2016 IEEE Congress, pp. 5092–5099 (2016)
62.
Zurück zum Zitat Bujny, M., Aulig, N., Olhofer, M., et al.: Evolutionary level set method for crashworthiness topology optimization. In: ECCOMAS Congress, Hersonissos, Greece, pp. 31–42 (2016) Bujny, M., Aulig, N., Olhofer, M., et al.: Evolutionary level set method for crashworthiness topology optimization. In: ECCOMAS Congress, Hersonissos, Greece, pp. 31–42 (2016)
63.
Zurück zum Zitat Bujny, M., Aulig, N., Olhofer, M., et al.: Evolutionary crashworthiness topology optimization of thin-walled structures. In: 11th ASMO UK/ISSMO/NOED2016: International Conference on Numerical Optimisation Methods for Engineering Design. Munich, Germany, pp. 115–125 (2016) Bujny, M., Aulig, N., Olhofer, M., et al.: Evolutionary crashworthiness topology optimization of thin-walled structures. In: 11th ASMO UK/ISSMO/NOED2016: International Conference on Numerical Optimisation Methods for Engineering Design. Munich, Germany, pp. 115–125 (2016)
64.
Zurück zum Zitat Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited—the CMSA evolution strategy. In: International Conference on Parallel Problem Solving from Nature, pp. 123–132 (2008) Beyer, H.G., Sendhoff, B.: Covariance matrix adaptation revisited—the CMSA evolution strategy. In: International Conference on Parallel Problem Solving from Nature, pp. 123–132 (2008)
65.
Zurück zum Zitat Bujny, M., Aulig, N., Olhofer, M., et al.: Learning-based topology variation in evolutionary level set topology optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 825–832 (2018) Bujny, M., Aulig, N., Olhofer, M., et al.: Learning-based topology variation in evolutionary level set topology optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 825–832 (2018)
66.
Zurück zum Zitat Raponi, E., Bujny, M., Olhofer, M., et al.: Kriging-guided level set method for crash topology optimization. In: 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, Stuttgart, Germany, pp. 115–123 (2017) Raponi, E., Bujny, M., Olhofer, M., et al.: Kriging-guided level set method for crash topology optimization. In: 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, Stuttgart, Germany, pp. 115–123 (2017)
67.
Zurück zum Zitat Raponi, E., Bujny, M., Olhofer, M., et al.: Kriging-assisted topology optimization of crash structures. J. Comput. Methods Appl. Mech. Eng. 348, 730–752 (2019)MathSciNetMATH Raponi, E., Bujny, M., Olhofer, M., et al.: Kriging-assisted topology optimization of crash structures. J. Comput. Methods Appl. Mech. Eng. 348, 730–752 (2019)MathSciNetMATH
68.
Zurück zum Zitat Woo, H.W., Kwon, H.H., Tahk, M.J.: A hybrid method of evolutionary algorithms and gradient search. In: 2nd International Conference on Autonomous Robots and Agents, pp. 115–123 (2004) Woo, H.W., Kwon, H.H., Tahk, M.J.: A hybrid method of evolutionary algorithms and gradient search. In: 2nd International Conference on Autonomous Robots and Agents, pp. 115–123 (2004)
69.
Zurück zum Zitat van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: van Laarhoven, P.J. (ed.) Simulated Annealing: Theory and Applications, pp. 7–15. Springer, Dordrecht (1987)MATH van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: van Laarhoven, P.J. (ed.) Simulated Annealing: Theory and Applications, pp. 7–15. Springer, Dordrecht (1987)MATH
70.
Zurück zum Zitat Overvelde, J.T.: The moving node approach in topology optimization, [Master Thesis], Delft University (2012) Overvelde, J.T.: The moving node approach in topology optimization, [Master Thesis], Delft University (2012)
Metadaten
Titel
Hybrid algorithms for handling the numerical noise in topology optimization
verfasst von
Pooya Rostami
Javad Marzbanrad
Publikationsdatum
10.04.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00942-7

Weitere Artikel der Ausgabe 2/2020

Acta Mechanica Sinica 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.