Skip to main content
Erschienen in: Wireless Personal Communications 2/2023

07.08.2023

Hybrid CNN-SVM Classifier for Human Emotion Recognition Using ROI Extraction and Feature Fusion

verfasst von: Kanchan S. Vaidya, Pradeep M. Patil, Mukil Alagirisamy

Erschienen in: Wireless Personal Communications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Emotions expressed on a human face have a significant impact on decisions and arguments on a variety of topics. According to psychological theory, a person’s emotional states can be categorized as the afraid, disgusted, angry, sad, happy, neutral face and surprised. The automatic extraction of these emotions from images of human faces can help in human–computer interaction, among other things. Convolution Neural Network (CNN), Deep Belief Network (DBN), Bi-directional Long Short Term Memory (Bi-LSTM) are some of the existing techniques used to recognize the emotions of a human. This technique has some impacts like low accuracy and high error. To achieve better accuracy, hybrid CNN-SVM (Support Vector Machine) model is designed for classifying emotional state of humans. Initially, preprocessing is used to remove unwanted things from the image dataset. Resizing, Gaussian filter, Median filter, Histogram Equalization and Wiener filters are used in the preprocessing stage. After that, Region of Interest of the preprocessed image is extracted. Then features of the images are extracted based on Local Binary Pattern and Gabor feature technique. These obtained features are fused using the feature fusion process. The fused image data is fed to a hybrid CNN-SVM classifier. The hybrid CNN-SVM classifies the different emotional states of humans. The proposed method achieves an accuracy of 94% for CK_Plus, 86% FER_2013, 78% for KDEF, 96% for KMU_FED and 85% for the TFEID dataset. Thus the proposed human emotion recognition using the CNN-SVM approach produced optimal solutions compared to the existing systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Padhmashree, V., & Bhattacharyya, A. (2022). Human emotion recognition based on time–frequency analysis of multivariate EEG signal. Knowledge-Based Systems, 238, 107867.CrossRef Padhmashree, V., & Bhattacharyya, A. (2022). Human emotion recognition based on time–frequency analysis of multivariate EEG signal. Knowledge-Based Systems, 238, 107867.CrossRef
2.
Zurück zum Zitat Jiang, D., Wu, K., Chen, D., Tu, G., Zhou, T., Garg, A., & Gao, L. (2020). A probability and integrated learning based classification algorithm for high-level human emotion recognition problems. Measurement, 150, 107049.CrossRef Jiang, D., Wu, K., Chen, D., Tu, G., Zhou, T., Garg, A., & Gao, L. (2020). A probability and integrated learning based classification algorithm for high-level human emotion recognition problems. Measurement, 150, 107049.CrossRef
3.
Zurück zum Zitat Jain, D. K., Shamsolmoali, P., & Sehdev, P. (2019). Extended deep neural network for facial emotion recognition. Pattern Recognition Letters, 120, 69–74.CrossRef Jain, D. K., Shamsolmoali, P., & Sehdev, P. (2019). Extended deep neural network for facial emotion recognition. Pattern Recognition Letters, 120, 69–74.CrossRef
6.
Zurück zum Zitat Cimtay, Y., Ekmekcioglu, E., & Caglar-Ozhan, S. (2020). Cross-subject multimodal emotion recognition based on hybrid fusion. IEEE Access, 8, 168865–168878.CrossRef Cimtay, Y., Ekmekcioglu, E., & Caglar-Ozhan, S. (2020). Cross-subject multimodal emotion recognition based on hybrid fusion. IEEE Access, 8, 168865–168878.CrossRef
7.
Zurück zum Zitat Pal, S., Mukhopadhyay, S., & Suryadevara, N. (2021). Development and progress in sensors and technologies for human emotion recognition. Sensors, 21(16), 5554.CrossRef Pal, S., Mukhopadhyay, S., & Suryadevara, N. (2021). Development and progress in sensors and technologies for human emotion recognition. Sensors, 21(16), 5554.CrossRef
8.
Zurück zum Zitat Arunnehru, J., & Kalaiselvi Geetha, M. (2017). Automatic human emotion recognition in surveillance video. Springer, Cham: In Intelligent Techniques in Signal Processing for Multimedia Security.CrossRef Arunnehru, J., & Kalaiselvi Geetha, M. (2017). Automatic human emotion recognition in surveillance video. Springer, Cham: In Intelligent Techniques in Signal Processing for Multimedia Security.CrossRef
9.
Zurück zum Zitat Zhang, Y., Du, J., Wang, Z., Zhang, J., & Tu, Y. (2018). Attention based fully convolutional network for speech emotion recognition. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 1771–1775). IEEE. Zhang, Y., Du, J., Wang, Z., Zhang, J., & Tu, Y. (2018). Attention based fully convolutional network for speech emotion recognition. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 1771–1775). IEEE.
10.
Zurück zum Zitat Gupta, V., Chopda, M. D., & Pachori, R. B. (2018). Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sensors Journal, 19(6), 2266–2274.CrossRef Gupta, V., Chopda, M. D., & Pachori, R. B. (2018). Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sensors Journal, 19(6), 2266–2274.CrossRef
11.
Zurück zum Zitat Egger, M., Ley, M., & Hanke, S. (2019). Emotion recognition from physiological signal analysis: A review. Electronic Notes in Theoretical Computer Science, 343, 35–55.CrossRef Egger, M., Ley, M., & Hanke, S. (2019). Emotion recognition from physiological signal analysis: A review. Electronic Notes in Theoretical Computer Science, 343, 35–55.CrossRef
12.
Zurück zum Zitat Bhattacharyya, A., Tripathy, R. K., Garg, L., & Pachori, R. B. (2020). A novel multivariate-multiscale approach for computing EEG spectral and temporal complexity for human emotion recognition. IEEE Sensors Journal, 21(3), 3579–3591.CrossRef Bhattacharyya, A., Tripathy, R. K., Garg, L., & Pachori, R. B. (2020). A novel multivariate-multiscale approach for computing EEG spectral and temporal complexity for human emotion recognition. IEEE Sensors Journal, 21(3), 3579–3591.CrossRef
13.
Zurück zum Zitat Liang, Z., Oba, S., & Ishii, S. (2019). An unsupervised EEG decoding system for human emotion recognition. Neural Networks, 116, 257–268.CrossRef Liang, Z., Oba, S., & Ishii, S. (2019). An unsupervised EEG decoding system for human emotion recognition. Neural Networks, 116, 257–268.CrossRef
14.
Zurück zum Zitat Liu, Y., & Fu, G. (2021). Emotion recognition by deeply learned multi-channel textual and EEG features. Future Generation Computer Systems, 119, 1–6.CrossRef Liu, Y., & Fu, G. (2021). Emotion recognition by deeply learned multi-channel textual and EEG features. Future Generation Computer Systems, 119, 1–6.CrossRef
15.
Zurück zum Zitat Jerritta, S., Murugappan, M., Nagarajan, R., & Wan, K. (2011). Physiological signals based human emotion recognition: a review. In 2011 IEEE 7th international colloquium on signal processing and its applications (pp. 410–415). IEEE. Jerritta, S., Murugappan, M., Nagarajan, R., & Wan, K. (2011). Physiological signals based human emotion recognition: a review. In 2011 IEEE 7th international colloquium on signal processing and its applications (pp. 410–415). IEEE.
16.
Zurück zum Zitat Batbaatar, E., Li, M., & Ryu, K. H. (2019). Semantic-emotion neural network for emotion recognition from text. IEEE Access, 7, 111866–111878.CrossRef Batbaatar, E., Li, M., & Ryu, K. H. (2019). Semantic-emotion neural network for emotion recognition from text. IEEE Access, 7, 111866–111878.CrossRef
17.
Zurück zum Zitat Hassan, M. M., Alam, M. G. R., Uddin, M. Z., Huda, S., Almogren, A., & Fortino, G. (2019). Human emotion recognition using deep belief network architecture. Information Fusion, 51, 10–18.CrossRef Hassan, M. M., Alam, M. G. R., Uddin, M. Z., Huda, S., Almogren, A., & Fortino, G. (2019). Human emotion recognition using deep belief network architecture. Information Fusion, 51, 10–18.CrossRef
18.
Zurück zum Zitat Hossain, M. S., & Muhammad, G. (2019). Emotion recognition using deep learning approach from audio–visual emotional big data. Information Fusion, 49, 69–78.CrossRef Hossain, M. S., & Muhammad, G. (2019). Emotion recognition using deep learning approach from audio–visual emotional big data. Information Fusion, 49, 69–78.CrossRef
19.
Zurück zum Zitat Meng, H., Yan, T., Yuan, F., & Wei, H. (2019). Speech emotion recognition from 3D log-mel spectrograms with deep learning network. IEEE access, 7, 125868–125881.CrossRef Meng, H., Yan, T., Yuan, F., & Wei, H. (2019). Speech emotion recognition from 3D log-mel spectrograms with deep learning network. IEEE access, 7, 125868–125881.CrossRef
20.
Zurück zum Zitat Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysis in response to audio music using brain signals. Computers in Human Behavior, 65, 267–275.CrossRef Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysis in response to audio music using brain signals. Computers in Human Behavior, 65, 267–275.CrossRef
21.
Zurück zum Zitat Rahman, Z., Pu, Y. F., Aamir, M., & Ullah, F. (2019). A framework for fast automatic image cropping based on deep saliency map detection and Gaussian filter. International Journal of Computers and Applications, 41(3), 207–217.CrossRef Rahman, Z., Pu, Y. F., Aamir, M., & Ullah, F. (2019). A framework for fast automatic image cropping based on deep saliency map detection and Gaussian filter. International Journal of Computers and Applications, 41(3), 207–217.CrossRef
22.
Zurück zum Zitat Shah, A., Bangash, J. I., Khan, A. W., Ahmed, I., Khan, A., Khan, A., & Khan, A. (2020). Comparative analysis of median filter and its variants for removal of impulse noise from gray scale images. Journal of King Saud University-Computer and Information Sciences, 34(3), 505.CrossRef Shah, A., Bangash, J. I., Khan, A. W., Ahmed, I., Khan, A., Khan, A., & Khan, A. (2020). Comparative analysis of median filter and its variants for removal of impulse noise from gray scale images. Journal of King Saud University-Computer and Information Sciences, 34(3), 505.CrossRef
23.
Zurück zum Zitat Rao, B. S. (2020). Dynamic histogram equalization for contrast enhancement for digital images. Applied Soft Computing, 89, 106114.CrossRef Rao, B. S. (2020). Dynamic histogram equalization for contrast enhancement for digital images. Applied Soft Computing, 89, 106114.CrossRef
24.
Zurück zum Zitat Manju, B. R., & Sneha, M. R. (2020). ECG denoising using wiener filter and Kalman filter. Procedia Computer Science, 171, 273–281.CrossRef Manju, B. R., & Sneha, M. R. (2020). ECG denoising using wiener filter and Kalman filter. Procedia Computer Science, 171, 273–281.CrossRef
25.
Zurück zum Zitat Pattnaik, G., & Parvathi, K. (2021). Automatic detection and classification of tomato pests using support vector machine based on HOG and LBP feature extraction technique. Singapore: In Progress in Advanced Computing and Intelligent Engineering Springer.CrossRef Pattnaik, G., & Parvathi, K. (2021). Automatic detection and classification of tomato pests using support vector machine based on HOG and LBP feature extraction technique. Singapore: In Progress in Advanced Computing and Intelligent Engineering Springer.CrossRef
26.
Zurück zum Zitat Hassaballah, M., Kenk, M. A., & El-Henawy, I. M. (2020). Local binary pattern-based on-road vehicle detection in urban traffic scene. Pattern Analysis and Applications, 23(4), 1505–1521.CrossRef Hassaballah, M., Kenk, M. A., & El-Henawy, I. M. (2020). Local binary pattern-based on-road vehicle detection in urban traffic scene. Pattern Analysis and Applications, 23(4), 1505–1521.CrossRef
27.
Zurück zum Zitat Muthukumar, A., & Kavipriya, A. (2019). A biometric system based on Gabor feature extraction with SVM classifier for finger-Knuckle-print. Pattern Recognition Letters, 125, 150–156.CrossRef Muthukumar, A., & Kavipriya, A. (2019). A biometric system based on Gabor feature extraction with SVM classifier for finger-Knuckle-print. Pattern Recognition Letters, 125, 150–156.CrossRef
28.
Zurück zum Zitat Hussain, M., Bird, J.J., & Faria, D.R. (2018). A study on cnn transfer learning for image classification. In UK Workshop on computational Intelligence (pp. 191–202). Springer, Cham. Hussain, M., Bird, J.J., & Faria, D.R. (2018). A study on cnn transfer learning for image classification. In UK Workshop on computational Intelligence (pp. 191–202). Springer, Cham.
29.
Zurück zum Zitat Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM classifier for handwritten digit recognition. Procedia Computer Science, 167, 2554–2560.CrossRef Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM classifier for handwritten digit recognition. Procedia Computer Science, 167, 2554–2560.CrossRef
Metadaten
Titel
Hybrid CNN-SVM Classifier for Human Emotion Recognition Using ROI Extraction and Feature Fusion
verfasst von
Kanchan S. Vaidya
Pradeep M. Patil
Mukil Alagirisamy
Publikationsdatum
07.08.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10650-7

Weitere Artikel der Ausgabe 2/2023

Wireless Personal Communications 2/2023 Zur Ausgabe

Neuer Inhalt