Skip to main content
Erschienen in: Electrical Engineering 1/2024

11.08.2023 | Original Paper

Hybrid controller configuration for master–slave paralleling of DC–DC converters with improved sliding manifold

verfasst von: Tulasi Rao Burle, Guddy Satpathy, Dipankar De

Erschienen in: Electrical Engineering | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on sliding mode controller (SMC)-based master–slave parallel operation of DC–DC converters using a modified sliding manifold to achieve a fast dynamic response and very low steady-state error. The converter performance is analyzed in a novel way starting from a simple case of paralleling of two converters and then concept is extended for parallel operation of multiple converters. An investigation of the choice of the sliding surface on the performance of parallel converter is carried out in detail, and a mathematical design guideline for sliding coefficients for the proposed manifold for the master converter is derived to achieve stable operation. The proposed manifold ensures an improved dynamic response with an excellent steady-state accuracy in stand-alone mode. However, when it is incorporated with master–slave control for parallel operation with finite tie wire impedance, there is a degradation in the steady-state accuracy. In order to improve the steady-state performance of the sliding mode controller, two new hybrid (SMC + PI) controllers are proposed and implemented for parallel connected DC–DC converters. Finally, the proposed SMC techniques are verified through simulation study and through a scaled down experimental (laboratory) prototype.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi B (1998) Comparative study on paralleling schemes of converter modules for distributed power applications. IEEE Trans Ind Electron 45(2):194–199CrossRef Choi B (1998) Comparative study on paralleling schemes of converter modules for distributed power applications. IEEE Trans Ind Electron 45(2):194–199CrossRef
2.
Zurück zum Zitat Liu Y, Han Y, Lin C, Yang P, Wang C (2019) Design and implementation of droop control strategy for DC microgrid based on multiple DC/DC converters. In: Proceedings of IEEE ISGT, Chengdu, China, pp 3896–3901 Liu Y, Han Y, Lin C, Yang P, Wang C (2019) Design and implementation of droop control strategy for DC microgrid based on multiple DC/DC converters. In: Proceedings of IEEE ISGT, Chengdu, China, pp 3896–3901
3.
Zurück zum Zitat Ali S, Shengxue T, Jianyu Z, Ali A, Nawaz A (2019) An implementation of parallel buck converters for common load sharing in DC microgrid. Information 10:91CrossRef Ali S, Shengxue T, Jianyu Z, Ali A, Nawaz A (2019) An implementation of parallel buck converters for common load sharing in DC microgrid. Information 10:91CrossRef
4.
Zurück zum Zitat Wang JB (2012) Parallel DC/DC converters system with a novel primary droop current sharing control. IET Power Electron 5(8):1569–1580CrossRef Wang JB (2012) Parallel DC/DC converters system with a novel primary droop current sharing control. IET Power Electron 5(8):1569–1580CrossRef
5.
Zurück zum Zitat Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66CrossRef Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66CrossRef
6.
Zurück zum Zitat Lai YM, Tan S-C, Tsang YM (2009) Wireless control of load current sharing information for parallel-connected DC/DC power converters. IET Power Electron 2(1):14–21CrossRef Lai YM, Tan S-C, Tsang YM (2009) Wireless control of load current sharing information for parallel-connected DC/DC power converters. IET Power Electron 2(1):14–21CrossRef
7.
Zurück zum Zitat Rezkallah M, Sharma SK, Chandra A, Singh B, Rousse DR (2017) Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Trans Ind Electron 64(1):785–795CrossRef Rezkallah M, Sharma SK, Chandra A, Singh B, Rousse DR (2017) Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Trans Ind Electron 64(1):785–795CrossRef
8.
Zurück zum Zitat Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428CrossRef Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428CrossRef
9.
Zurück zum Zitat Altin N, Ozdemir S, Komurcugil H, Sefa I (2019) Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters. IEEE Trans Ind Electron 66(4):2903–2913CrossRef Altin N, Ozdemir S, Komurcugil H, Sefa I (2019) Sliding-mode control in natural frame with reduced number of sensors for three-phase grid-tied LCL-interfaced inverters. IEEE Trans Ind Electron 66(4):2903–2913CrossRef
10.
Zurück zum Zitat Ling R, Shu Z, Hu Q, Song Y (2018) Second-order sliding-mode controlled three-level buck DC–DC converters. IEEE Trans Ind Electron 65(1):898–906CrossRef Ling R, Shu Z, Hu Q, Song Y (2018) Second-order sliding-mode controlled three-level buck DC–DC converters. IEEE Trans Ind Electron 65(1):898–906CrossRef
11.
Zurück zum Zitat Bagheri F, Komurcugil H, Kukrer O, Guler N, Bayhan S (2020) Multi-input multi-output-based sliding-mode controller for single-phase quasi-Z-source inverters. IEEE Trans Ind Electron 67(8):6439–6449CrossRef Bagheri F, Komurcugil H, Kukrer O, Guler N, Bayhan S (2020) Multi-input multi-output-based sliding-mode controller for single-phase quasi-Z-source inverters. IEEE Trans Ind Electron 67(8):6439–6449CrossRef
12.
Zurück zum Zitat He Y, Luo FL (2006) Sliding-mode control for DC–DC converters with constant switching frequency. Proc IEE Control Theory Appl 153(1):37–45CrossRef He Y, Luo FL (2006) Sliding-mode control for DC–DC converters with constant switching frequency. Proc IEE Control Theory Appl 153(1):37–45CrossRef
13.
Zurück zum Zitat Petronijevic MP, Milosavljevic C, Veselic B et al (2021) Robust cascade control of electrical drives using discrete-time chattering-free sliding mode controllers with output saturation. Electr Eng 103:2181–2195CrossRef Petronijevic MP, Milosavljevic C, Veselic B et al (2021) Robust cascade control of electrical drives using discrete-time chattering-free sliding mode controllers with output saturation. Electr Eng 103:2181–2195CrossRef
14.
Zurück zum Zitat Goudarzian A, Khosravi A, Abjadi NR (2020) Input-output current regulation of Zeta converter using an optimized dual-loop current controller. Electr Eng 102:279–291CrossRef Goudarzian A, Khosravi A, Abjadi NR (2020) Input-output current regulation of Zeta converter using an optimized dual-loop current controller. Electr Eng 102:279–291CrossRef
15.
Zurück zum Zitat Al Zawaideh A, Boiko IM (2022) Analysis of stability and performance of a cascaded PI sliding-mode control DC–DC boost converter via LPRS. IEEE Trans Power Electron 37(9):10455–10465CrossRefADS Al Zawaideh A, Boiko IM (2022) Analysis of stability and performance of a cascaded PI sliding-mode control DC–DC boost converter via LPRS. IEEE Trans Power Electron 37(9):10455–10465CrossRefADS
16.
Zurück zum Zitat Tan S-C, Lai YM, Tse CK (2005) Design of PWM based sliding mode voltage controller for DC–DC converters operating in continuous conduction mode. Proc ECPEA, Dresden, pp 1–10 Tan S-C, Lai YM, Tse CK (2005) Design of PWM based sliding mode voltage controller for DC–DC converters operating in continuous conduction mode. Proc ECPEA, Dresden, pp 1–10
17.
Zurück zum Zitat Jazi HN, Goudarzian A, Pourbagher R, Derakhshandeh SY (2017) PI and PWM sliding mode control of POESLL converter. IEEE Trans Aerospace Electron Syst 53(5):2167–2177CrossRefADS Jazi HN, Goudarzian A, Pourbagher R, Derakhshandeh SY (2017) PI and PWM sliding mode control of POESLL converter. IEEE Trans Aerospace Electron Syst 53(5):2167–2177CrossRefADS
18.
Zurück zum Zitat Mohanty PR, Panda AK (2017) Fixed-frequency sliding-mode control scheme based on current control manifold for improved dynamic performance of boost PFC converter. IEEE J Emerg Sel Top Power Electron 5(1):576–586CrossRef Mohanty PR, Panda AK (2017) Fixed-frequency sliding-mode control scheme based on current control manifold for improved dynamic performance of boost PFC converter. IEEE J Emerg Sel Top Power Electron 5(1):576–586CrossRef
19.
Zurück zum Zitat Chincholkar SH, Jiang W, Chan C-Y (2018) An improved PWM-based sliding-mode controller for a DC–DC cascade boost converter. IEEE Trans Circ Syst II Express Briefs 65(11):1639–1643 Chincholkar SH, Jiang W, Chan C-Y (2018) An improved PWM-based sliding-mode controller for a DC–DC cascade boost converter. IEEE Trans Circ Syst II Express Briefs 65(11):1639–1643
20.
Zurück zum Zitat Tan S, Lai YM, Tse CK (2008) Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans Power Electron 23(2):600–611CrossRefADS Tan S, Lai YM, Tse CK (2008) Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans Power Electron 23(2):600–611CrossRefADS
21.
Zurück zum Zitat Chincholkar SH, Chan C-Y (2017) Design of fixed-frequency pulsewidth-modulation-based sliding-mode controllers for the quadratic boost converter. IEEE Trans Circ Syst II Express Briefs 64(1):51–55 Chincholkar SH, Chan C-Y (2017) Design of fixed-frequency pulsewidth-modulation-based sliding-mode controllers for the quadratic boost converter. IEEE Trans Circ Syst II Express Briefs 64(1):51–55
22.
Zurück zum Zitat Cao J, Chen Q, Zhang L, Quan S (2018) Sliding mode control of bidirectional DC/DC converter. In: Proceedings of YAC, Nanjing, pp 717–721 Cao J, Chen Q, Zhang L, Quan S (2018) Sliding mode control of bidirectional DC/DC converter. In: Proceedings of YAC, Nanjing, pp 717–721
23.
Zurück zum Zitat Tan S-C, Lai Y-M, Tse CK (2011) Sliding mode control of switching power converters. CRC Press, Cambridge Tan S-C, Lai Y-M, Tse CK (2011) Sliding mode control of switching power converters. CRC Press, Cambridge
24.
Zurück zum Zitat Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428CrossRef Lopez M, de Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428CrossRef
25.
Zurück zum Zitat Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66CrossRef Mazumder SK, Tahir M, Acharya K (2008) Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans Ind Electron 55(1):59–66CrossRef
26.
Zurück zum Zitat Rajagopalan J, Xing K, Guo Y, Lee FC, Manners B (1996) Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control. In: Proceedings of APEC, CA, pp 678–684 Rajagopalan J, Xing K, Guo Y, Lee FC, Manners B (1996) Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control. In: Proceedings of APEC, CA, pp 678–684
27.
Zurück zum Zitat Verma V, Talpur GG (2012) Decentralized master–slave operation of microgrid using current controlled distributed generation sources. In: Proceedings of IEEE PEDES, Bengaluru, pp 1–6 Verma V, Talpur GG (2012) Decentralized master–slave operation of microgrid using current controlled distributed generation sources. In: Proceedings of IEEE PEDES, Bengaluru, pp 1–6
28.
Zurück zum Zitat Chiang H-C, Jen K-K, You G-H (2016) Improved droop control method with precise current sharing and voltage regulation. IET Power Electron 9:789–800CrossRef Chiang H-C, Jen K-K, You G-H (2016) Improved droop control method with precise current sharing and voltage regulation. IET Power Electron 9:789–800CrossRef
29.
Zurück zum Zitat Augustine S, Mishra MK, Lakshminarasamma N (2015) Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Trans Sustain Energy 6(1):132–141 Augustine S, Mishra MK, Lakshminarasamma N (2015) Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Trans Sustain Energy 6(1):132–141
30.
Zurück zum Zitat Sadabadi MS (2021) A distributed control strategy for parallel DC–DC converters. IEEE Control Syst Lett 5(4):1231–1236MathSciNetCrossRef Sadabadi MS (2021) A distributed control strategy for parallel DC–DC converters. IEEE Control Syst Lett 5(4):1231–1236MathSciNetCrossRef
31.
Zurück zum Zitat Renaudineau H et al (2014) Efficiency optimization through current-sharing for paralleled DC–DC boost converters with parameter estimation. IEEE Trans Power Electron 29(2):759–767 Renaudineau H et al (2014) Efficiency optimization through current-sharing for paralleled DC–DC boost converters with parameter estimation. IEEE Trans Power Electron 29(2):759–767
32.
Zurück zum Zitat Chen S-Y, Yang B-C, Pu T-A, Chang C-H, Lin R-C (2019) Active current sharing of a parallel DC–DC converters system using bat algorithm optimized two-DOF PID control. IEEE Access 7:84757–84769CrossRef Chen S-Y, Yang B-C, Pu T-A, Chang C-H, Lin R-C (2019) Active current sharing of a parallel DC–DC converters system using bat algorithm optimized two-DOF PID control. IEEE Access 7:84757–84769CrossRef
33.
Zurück zum Zitat Du H, Jiang C, Wen G, Zhu W, Cheng Y (2019) Current sharing control for parallel DC–DC buck converters based on finite-time control technique. IEEE Trans Ind Inform 15(4):2186–2198CrossRef Du H, Jiang C, Wen G, Zhu W, Cheng Y (2019) Current sharing control for parallel DC–DC buck converters based on finite-time control technique. IEEE Trans Ind Inform 15(4):2186–2198CrossRef
34.
Zurück zum Zitat Chen H-C, Lu C-Y, Rout US (2018) Decoupled master–slave current balancing control for three-phase interleaved boost converters. IEEE Trans Power Electron 33(5):3683–3687CrossRefADS Chen H-C, Lu C-Y, Rout US (2018) Decoupled master–slave current balancing control for three-phase interleaved boost converters. IEEE Trans Power Electron 33(5):3683–3687CrossRefADS
35.
Zurück zum Zitat Long R, Quan S, Zhang L, Chen Q, Zeng C, Ma L (2015) Current sharing in parallel fuel cell generation system based on model predictive control. Int J Hydro Energy 40(35):11587–11594CrossRef Long R, Quan S, Zhang L, Chen Q, Zeng C, Ma L (2015) Current sharing in parallel fuel cell generation system based on model predictive control. Int J Hydro Energy 40(35):11587–11594CrossRef
36.
Zurück zum Zitat Tomescu B, Vanlandingham HF (1999) Improved large-signal performance of paralleled DC–DC converters current sharing. IEEE Trans Power Electron 14(3):573–577CrossRefADS Tomescu B, Vanlandingham HF (1999) Improved large-signal performance of paralleled DC–DC converters current sharing. IEEE Trans Power Electron 14(3):573–577CrossRefADS
37.
Zurück zum Zitat Keller G, Lascu D, Myrzik JMA (2005) State-space control structures for buck converters with/without input filter. In: Proceedings of ECPEA, Dresden, pp 1–10 Keller G, Lascu D, Myrzik JMA (2005) State-space control structures for buck converters with/without input filter. In: Proceedings of ECPEA, Dresden, pp 1–10
38.
Zurück zum Zitat Repecho V, Biel D, Ramos-Lara R, Vega PG (2018) Fixed-switching frequency interleaved sliding mode eight-phase synchronous buck converter. IEEE Trans Power Electron 33(1):676–688CrossRefADS Repecho V, Biel D, Ramos-Lara R, Vega PG (2018) Fixed-switching frequency interleaved sliding mode eight-phase synchronous buck converter. IEEE Trans Power Electron 33(1):676–688CrossRefADS
39.
Zurück zum Zitat Li M, Tse CK, Iu HHC, Ma X (2010) Unified equivalent modeling for stability analysis of parallel-connected DC/DC converters. IEEE Trans Circ Syst II Express Briefs 57(11):898–902ADS Li M, Tse CK, Iu HHC, Ma X (2010) Unified equivalent modeling for stability analysis of parallel-connected DC/DC converters. IEEE Trans Circ Syst II Express Briefs 57(11):898–902ADS
40.
Zurück zum Zitat Repecho V, Biel D, Ramos-Lara R (2020) Robust ZAD sliding mode control for an 8-phase step-down converter. IEEE Trans Power Electron 35(2):2222–2232CrossRefADS Repecho V, Biel D, Ramos-Lara R (2020) Robust ZAD sliding mode control for an 8-phase step-down converter. IEEE Trans Power Electron 35(2):2222–2232CrossRefADS
Metadaten
Titel
Hybrid controller configuration for master–slave paralleling of DC–DC converters with improved sliding manifold
verfasst von
Tulasi Rao Burle
Guddy Satpathy
Dipankar De
Publikationsdatum
11.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2024
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01976-3

Weitere Artikel der Ausgabe 1/2024

Electrical Engineering 1/2024 Zur Ausgabe

Neuer Inhalt