Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

10.01.2022

Hybrid Technique Based Harmonic Elimination of the Thirty-One Level Multi Level Inverter

verfasst von: K. Sridhar, R. Prakash

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper suggests an intelligent control method for extracting multi-level inverter (MLI) harmonics. The hybrid control technology combines the Whale optimization algorithm (WOA) and the Sine Cosine Algorithm (SCA). For the ideal switching direction, harmonic Voltage, and harmonic distortion that is established as a database the WOA algorithm is used. The requisite fundamental voltage and harmonic material are to be obtained to optimize the switching angles of the MLI. The whale location for the change shall be added to the SCA output to generate the MLI command pulse. Simulation tests of thirty one-level H-MLI check the accuracy of the proposed method. In MATLAB/Simulink system the suggested hybrid software is applied. The output is checked for the suggested methodology, contrasted with the current methods, such as cuckoo search (CS), firefly algorithm (FA), and WOA, which is the product of the proposed hybrid technique. In terms of total harmonic deviations, the results obtained through the proposed method are considered to be superior to the current system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE Access, 7, 43831–43845. CrossRef Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE Access, 7, 43831–43845. CrossRef
2.
Zurück zum Zitat Bihari, S. P., & Sadhu, P. K. (2021). SLDB controller based 31 level MLI for grid-connected hybrid renewable energy sources. Journal of Ambient Intelligence and Humanized Computing, 2021, 1–13. Bihari, S. P., & Sadhu, P. K. (2021). SLDB controller based 31 level MLI for grid-connected hybrid renewable energy sources. Journal of Ambient Intelligence and Humanized Computing, 2021, 1–13.
3.
Zurück zum Zitat Kala, P., & Arora, S. (2017). A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renewable and Sustainable Energy Reviews, 76, 905–931.CrossRef Kala, P., & Arora, S. (2017). A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications. Renewable and Sustainable Energy Reviews, 76, 905–931.CrossRef
4.
Zurück zum Zitat Suresh, Y., Venkataramanaiah, J., Panda, A. K., Dhanamjayulu, C., & Venugopal, P. (2017). Investigation on cascade multilevel inverter with symmetric, asymmetric, hybrid and multi-cell configurations. Ain Shams Engineering Journal, 8(2), 263–276.CrossRef Suresh, Y., Venkataramanaiah, J., Panda, A. K., Dhanamjayulu, C., & Venugopal, P. (2017). Investigation on cascade multilevel inverter with symmetric, asymmetric, hybrid and multi-cell configurations. Ain Shams Engineering Journal, 8(2), 263–276.CrossRef
5.
Zurück zum Zitat Siddique, M. D., Mekhilef, S., Shah, N. M., & Memon, M. A. (2019). Optimal design of a new cascaded multilevel inverter topology with reduced switch count. IEEE Access, 7, 24498–24510.CrossRef Siddique, M. D., Mekhilef, S., Shah, N. M., & Memon, M. A. (2019). Optimal design of a new cascaded multilevel inverter topology with reduced switch count. IEEE Access, 7, 24498–24510.CrossRef
6.
Zurück zum Zitat Siddique, M. D., Bhaskar, M. S., Rawa, M., Mekhilef, S., Memon, M. A., Padmanaban, S., Almakhles, D. J., & Subramaniam, U. (2020). Single-phase hybrid multilevel inverter topology with low switching frequency modulation techniques for lower order harmonic elimination. IET Power Electronics, 13(17), 4117–4127.CrossRef Siddique, M. D., Bhaskar, M. S., Rawa, M., Mekhilef, S., Memon, M. A., Padmanaban, S., Almakhles, D. J., & Subramaniam, U. (2020). Single-phase hybrid multilevel inverter topology with low switching frequency modulation techniques for lower order harmonic elimination. IET Power Electronics, 13(17), 4117–4127.CrossRef
7.
Zurück zum Zitat Manivelan, C. (2020). A Survey on multilevel inverter topologies and control schemes with harmonic elimination. In 2020 International conference on electrotechnical complexes and systems (ICOECS) (pp. 1–7). IEEE Manivelan, C. (2020). A Survey on multilevel inverter topologies and control schemes with harmonic elimination. In 2020 International conference on electrotechnical complexes and systems (ICOECS) (pp. 1–7). IEEE
8.
Zurück zum Zitat Mohapatra, S. K., Khadiratna, A., Behera, A. K., Jena, P., Nayak, S., & Prusty, B. K. (2020). Design and simulation of hybrid cascaded multilevel inverter. In 2020 International conference on computational intelligence for smart power system and sustainable energy (CISPSSE) (pp. 1–5). IEEE. Mohapatra, S. K., Khadiratna, A., Behera, A. K., Jena, P., Nayak, S., & Prusty, B. K. (2020). Design and simulation of hybrid cascaded multilevel inverter. In 2020 International conference on computational intelligence for smart power system and sustainable energy (CISPSSE) (pp. 1–5). IEEE.
9.
Zurück zum Zitat Mahato, B., Majumdar, S., & Jana, K. C. (2019). Single-phase Modified T-type–based multilevel inverter with reduced number of power electronic devices. International Transactions on Electrical Energy Systems, 29(11), e12097.CrossRef Mahato, B., Majumdar, S., & Jana, K. C. (2019). Single-phase Modified T-type–based multilevel inverter with reduced number of power electronic devices. International Transactions on Electrical Energy Systems, 29(11), e12097.CrossRef
10.
Zurück zum Zitat Lee, S. S., Chu, B., Idris, N. R. N., Goh, H. H., & Heng, Y. E. (2016). Switched-battery boost-multilevel inverter with GA optimized SHEPWM for standalone application. IEEE Transactions on Industrial Electronics, 63(4), 2133–2142.CrossRef Lee, S. S., Chu, B., Idris, N. R. N., Goh, H. H., & Heng, Y. E. (2016). Switched-battery boost-multilevel inverter with GA optimized SHEPWM for standalone application. IEEE Transactions on Industrial Electronics, 63(4), 2133–2142.CrossRef
11.
Zurück zum Zitat Youssef, M. Z., Woronowicz, K., Aditya, K., Azeez, N. A., & Williamson, S. S. (2016). Design and development of an efficient multilevel DC/AC traction inverter for railway transportation electrification. IEEE Transactions on Power Electronics, 31(4), 3036–3042.CrossRef Youssef, M. Z., Woronowicz, K., Aditya, K., Azeez, N. A., & Williamson, S. S. (2016). Design and development of an efficient multilevel DC/AC traction inverter for railway transportation electrification. IEEE Transactions on Power Electronics, 31(4), 3036–3042.CrossRef
12.
Zurück zum Zitat Yang, K., Zhang, Qi., Zhang, J., Yuan, R., Guan, Q., Wensheng, Yu., & Wang, J. (2017). Unified selective harmonic elimination for multilevel converters. IEEE Transactions on Power Electronics, 32(2), 1579–1590.CrossRef Yang, K., Zhang, Qi., Zhang, J., Yuan, R., Guan, Q., Wensheng, Yu., & Wang, J. (2017). Unified selective harmonic elimination for multilevel converters. IEEE Transactions on Power Electronics, 32(2), 1579–1590.CrossRef
13.
Zurück zum Zitat Dabbaghjamanesh, M., Moeini, A., Ashkaboosi, M., Khazaei, P., & Mirzapalangi, K. (2016). High performance control of grid connected cascaded H-Bridge active rectifier based on type II-fuzzy logic controller with low frequency modulation technique. An International Journal of Electrical and Computer Engineering, 6(2) Dabbaghjamanesh, M., Moeini, A., Ashkaboosi, M., Khazaei, P., & Mirzapalangi, K. (2016). High performance control of grid connected cascaded H-Bridge active rectifier based on type II-fuzzy logic controller with low frequency modulation technique. An International Journal of Electrical and Computer Engineering, 6(2)
14.
Zurück zum Zitat Yu, Y., Konstantinou, G., Hredzak, B., & Agelidis, V. G. (2016). Power balance of cascaded H-bridge multilevel converters for large-scale photovoltaic integration. IEEE Transactions on Power Electronics, 31(1), 292–303.CrossRef Yu, Y., Konstantinou, G., Hredzak, B., & Agelidis, V. G. (2016). Power balance of cascaded H-bridge multilevel converters for large-scale photovoltaic integration. IEEE Transactions on Power Electronics, 31(1), 292–303.CrossRef
15.
Zurück zum Zitat Karasani, R. R., Borghate, V. B., Meshram, P. M., Suryawanshi, H. M., & Sabyasachi, S. (2017). A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Transactions on Power Electronics, 32(2), 1070–1087.CrossRef Karasani, R. R., Borghate, V. B., Meshram, P. M., Suryawanshi, H. M., & Sabyasachi, S. (2017). A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Transactions on Power Electronics, 32(2), 1070–1087.CrossRef
16.
Zurück zum Zitat Boby, M., Pramanick, S., Kaarthik, R. S., Gopakumar, K., & Umanand, L. (2017). Fifth-and seventh-order harmonic elimination with multilevel dodecagonal voltage space vector structure for IM drive using a single DC source for the full speed range. IEEE Transactions on Power Electronics, 32(1), 60–68.CrossRef Boby, M., Pramanick, S., Kaarthik, R. S., Gopakumar, K., & Umanand, L. (2017). Fifth-and seventh-order harmonic elimination with multilevel dodecagonal voltage space vector structure for IM drive using a single DC source for the full speed range. IEEE Transactions on Power Electronics, 32(1), 60–68.CrossRef
17.
Zurück zum Zitat Coppola, M., Di Napoli, F., Guerriero, P., Iannuzzi, D., Daliento, S., & Del Pizzo, A. (2016). An FPGA-based advanced control strategy of a gridtied PV CHB inverter. IEEE Transactions on Power Electronics, 31(1), 806–816.CrossRef Coppola, M., Di Napoli, F., Guerriero, P., Iannuzzi, D., Daliento, S., & Del Pizzo, A. (2016). An FPGA-based advanced control strategy of a gridtied PV CHB inverter. IEEE Transactions on Power Electronics, 31(1), 806–816.CrossRef
18.
Zurück zum Zitat Townsend, C. D., Yu, Y., Konstantinou, G., & Agelidis, V. G. (2016). Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple. IEEE Transactions on Power Electronics, 31(8), 5574–5586.CrossRef Townsend, C. D., Yu, Y., Konstantinou, G., & Agelidis, V. G. (2016). Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple. IEEE Transactions on Power Electronics, 31(8), 5574–5586.CrossRef
19.
Zurück zum Zitat Wang, L., Zhang, D., Wang, Y., Wu, B., & Athab, H. S. (2016). Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Transactions on Power Electronics, 31(4), 3289–3301.CrossRef Wang, L., Zhang, D., Wang, Y., Wu, B., & Athab, H. S. (2016). Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications. IEEE Transactions on Power Electronics, 31(4), 3289–3301.CrossRef
20.
Zurück zum Zitat Samadaei, E., Gholamian, S. A., Sheikholeslami, A., & Adabi, J. (2016). An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components. IEEE Transactions on Industrial Electronics, 63(11), 7148–7156.CrossRef Samadaei, E., Gholamian, S. A., Sheikholeslami, A., & Adabi, J. (2016). An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components. IEEE Transactions on Industrial Electronics, 63(11), 7148–7156.CrossRef
21.
Zurück zum Zitat Barzegarkhoo, R., Kojabadi, H. M., Zamiry, E., Vosoughi, N., & Chang, L. (2016). Generalized structure for a single phase switched-capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches. IEEE Transactions on Power Electronics, 31(8), 5604–5617.CrossRef Barzegarkhoo, R., Kojabadi, H. M., Zamiry, E., Vosoughi, N., & Chang, L. (2016). Generalized structure for a single phase switched-capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches. IEEE Transactions on Power Electronics, 31(8), 5604–5617.CrossRef
22.
Zurück zum Zitat Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., Talebi, H. A., & Niknam-Kumle, A. (2017) Notice of violation of IEEE publication principles a hybrid ANFIS/ABC-based online selective harmonic elimination switching pattern for cascaded multi-level inverters of microgrids. IEEE Transactions on Industrial Electronics. Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., Talebi, H. A., & Niknam-Kumle, A. (2017) Notice of violation of IEEE publication principles a hybrid ANFIS/ABC-based online selective harmonic elimination switching pattern for cascaded multi-level inverters of microgrids. IEEE Transactions on Industrial Electronics.
23.
Zurück zum Zitat Yang, K., Zhang, Q., Yuan, R., Yu, W., Yuan, J., & Wang, J. (2016). Selective harmonic elimination with Groebner bases and symmetric polynomials. IEEE Transactions on Power Electronics, 31(4), 2742–2752.CrossRef Yang, K., Zhang, Q., Yuan, R., Yu, W., Yuan, J., & Wang, J. (2016). Selective harmonic elimination with Groebner bases and symmetric polynomials. IEEE Transactions on Power Electronics, 31(4), 2742–2752.CrossRef
24.
Zurück zum Zitat Letha, S. S., Thakur, T., & Kumar, J. (2016). Harmonic elimination of a photo-voltaic based cascaded H-bridge multilevel inverter using PSO (particle swarm optimization) for induction motor drive. An International Journal of Energy, 107, 335–346.CrossRef Letha, S. S., Thakur, T., & Kumar, J. (2016). Harmonic elimination of a photo-voltaic based cascaded H-bridge multilevel inverter using PSO (particle swarm optimization) for induction motor drive. An International Journal of Energy, 107, 335–346.CrossRef
25.
Zurück zum Zitat Dhanamjayulu, C., Arunkumar, G., Pandian, B. J., Ravi Kumar, C. V., Praveen Kumar, M., Jerin, A. R. A., & Venugopal, P. (2019). Real-time implementation of a 31-level asymmetrical cascaded multilevel inverter for dynamic loads. IEEE Access, 7, 51254–51266.CrossRef Dhanamjayulu, C., Arunkumar, G., Pandian, B. J., Ravi Kumar, C. V., Praveen Kumar, M., Jerin, A. R. A., & Venugopal, P. (2019). Real-time implementation of a 31-level asymmetrical cascaded multilevel inverter for dynamic loads. IEEE Access, 7, 51254–51266.CrossRef
26.
Zurück zum Zitat Kumar, A. N., Joji, S., Tangirala, A., & Sujith M. (2018) A 31-level MLI topology with various level-shift PWM techniques and its comparative analysis. In International conference on communication and electronics systems (ICCES) (pp. 312–316) Kumar, A. N., Joji, S., Tangirala, A., & Sujith M. (2018) A 31-level MLI topology with various level-shift PWM techniques and its comparative analysis. In International conference on communication and electronics systems (ICCES) (pp. 312–316)
27.
Zurück zum Zitat Husain, M. A., Khan, A., Tariq, A., Khan, Z. A., & Jain, A. (2018). Aspects involved in the modeling of PV system, comparison of MPPT schemes, and study of different ambient conditions using P&O method. An International Journal of System and Architecture, 5, 285–303.CrossRef Husain, M. A., Khan, A., Tariq, A., Khan, Z. A., & Jain, A. (2018). Aspects involved in the modeling of PV system, comparison of MPPT schemes, and study of different ambient conditions using P&O method. An International Journal of System and Architecture, 5, 285–303.CrossRef
28.
Zurück zum Zitat Raushan, R., Mahato, B., & Jana, K. C. (2016). Comprehensive analysis of a novel three-phase multilevel inverter with minimum number of switches. IET Power Electronics, 9(8), 1600–1607.CrossRef Raushan, R., Mahato, B., & Jana, K. C. (2016). Comprehensive analysis of a novel three-phase multilevel inverter with minimum number of switches. IET Power Electronics, 9(8), 1600–1607.CrossRef
29.
Zurück zum Zitat Sun, X., Wang, B., Zhou, Y., Wang, W., Du, H., & Lu, Z. (2016). A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Transactions on Industrial Electronics, 63(11), 7184–7194.CrossRef Sun, X., Wang, B., Zhou, Y., Wang, W., Du, H., & Lu, Z. (2016). A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Transactions on Industrial Electronics, 63(11), 7184–7194.CrossRef
30.
Zurück zum Zitat Krishnan, G. V., Rajkumar, M. V., & Hemalatha, C. (2016). Modeling and simulation of 13-level cascaded hybrid multilevel inverter with less number of switches. An International Journal of Innovative Studies in Sciences and Engineering Technology, 2(11), 43–47. Krishnan, G. V., Rajkumar, M. V., & Hemalatha, C. (2016). Modeling and simulation of 13-level cascaded hybrid multilevel inverter with less number of switches. An International Journal of Innovative Studies in Sciences and Engineering Technology, 2(11), 43–47.
31.
Zurück zum Zitat Niknam Kumle, A., Fathi, S. H., Jabbarvaziri, F., Jamshidi, M., & Heidari Yazdi, S. S. (2015). Application of memetic algorithm for selective harmonic elimination in multi-level inverters. An International Journal of IET Power Electronics, 08(09), 1733–1739.CrossRef Niknam Kumle, A., Fathi, S. H., Jabbarvaziri, F., Jamshidi, M., & Heidari Yazdi, S. S. (2015). Application of memetic algorithm for selective harmonic elimination in multi-level inverters. An International Journal of IET Power Electronics, 08(09), 1733–1739.CrossRef
32.
Zurück zum Zitat Salam, Z., Majed, A., & Amjad, A. M. (2015). Design and implementation of 15-level cascaded multi-level voltage source inverter with harmonics elimination pulse-width modulation using differential evolution method. IET Power Electronics, 08(8), 1740–1748.CrossRef Salam, Z., Majed, A., & Amjad, A. M. (2015). Design and implementation of 15-level cascaded multi-level voltage source inverter with harmonics elimination pulse-width modulation using differential evolution method. IET Power Electronics, 08(8), 1740–1748.CrossRef
33.
Zurück zum Zitat Yin, O. W., & Babu, B. C. (2018). Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. An International Journal of Optik, 169, 48–61. Yin, O. W., & Babu, B. C. (2018). Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. An International Journal of Optik, 169, 48–61.
34.
Zurück zum Zitat Prabhu, R. R., Madhusudhana, J., & Puttaswamy, P. S. (2019). Comparative study of 31-level symmetrical and asymmetrical cascaded H-bridge multilevel inverter. In Emerging research in electronics, computer science and technology. (pp. 1185–1197). Springer. Prabhu, R. R., Madhusudhana, J., & Puttaswamy, P. S. (2019). Comparative study of 31-level symmetrical and asymmetrical cascaded H-bridge multilevel inverter. In Emerging research in electronics, computer science and technology. (pp. 1185–1197). Springer.
35.
Zurück zum Zitat Mohapatra, G., & Nayak, M. R. (2018). Switching angle and power loss calculation for THD minimization in CHB-multilevel inverter using DEA. In Information and decision sciences (pp. 491–502). Springer. Mohapatra, G., & Nayak, M. R. (2018). Switching angle and power loss calculation for THD minimization in CHB-multilevel inverter using DEA. In Information and decision sciences (pp. 491–502). Springer.
36.
Zurück zum Zitat Mehne, H. H., & Mirjalili, S. (2018). A parallel numerical method for solving optimal control problems based on whale optimization algorithm. An International Journal of Knowledge-Based Systems, 151, 114–123.CrossRef Mehne, H. H., & Mirjalili, S. (2018). A parallel numerical method for solving optimal control problems based on whale optimization algorithm. An International Journal of Knowledge-Based Systems, 151, 114–123.CrossRef
37.
Zurück zum Zitat Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. An International Journal Knowledge-Based Systems, 172, 42–63.CrossRef Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. An International Journal Knowledge-Based Systems, 172, 42–63.CrossRef
38.
Zurück zum Zitat Attia, A.-F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine–Cosine algorithm. An International Journal of Electrical Power & Energy Systems, 99, 331–343. CrossRef Attia, A.-F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine–Cosine algorithm. An International Journal of Electrical Power & Energy Systems, 99, 331–343. CrossRef
Metadaten
Titel
Hybrid Technique Based Harmonic Elimination of the Thirty-One Level Multi Level Inverter
verfasst von
K. Sridhar
R. Prakash
Publikationsdatum
10.01.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09208-2

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt