Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2017

25.03.2017 | Original Article

Hydrogen-enhanced catalytic hydrothermal gasification of biomass

verfasst von: J. Reimer, S. Müller, E. De Boni, F. Vogel

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The impact of hydrogen co-feeding on the catalytic hydrothermal gasification of wet biomass was explored in a continuous test rig using a feed of 10 wt% glycerol in water and a fixed bed of a carbon-supported ruthenium catalyst. The reactor was operated at a nominal temperature of 400 °C and at pressures of 26–28 MPa. Variation of the hydrogen-to-glycerol ratio as well as of the total pressure showed clearly the methanation reaction to be promoted at the expense of carbon dioxide and hydrogen formation. This is explained by a higher hydrogen surface coverage and consecutively higher rates for hydrogenation of surface-bound carbon. An increase in peak temperature of ca. 75 K occurred in the catalytic fixed-bed when co-feeding hydrogen. The measured product gas composition was close to the thermodynamic equilibrium calculated at the outlet temperature of the reactor. A maximum methane concentration of 86 vol% in the raw gas was obtained at 28 MPa with a stoichiometric addition of hydrogen. Full catalytic activity was maintained during and after the hydrogen co-feeding experiments, verified by comparing the performance of a run with a 10 wt% glycerol in water feed after co-feeding hydrogen, for which the product distribution was very close to the experiments before hydrogen co-feeding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kruse A, Gawlik A (2003) Biomass conversion in water at 330−410 °C and 30−50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42(2):267–279. doi:10.1021/ie0202773 CrossRef Kruse A, Gawlik A (2003) Biomass conversion in water at 330−410 °C and 30−50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42(2):267–279. doi:10.​1021/​ie0202773 CrossRef
2.
Zurück zum Zitat Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: effect of glycerol and its degradation products on the continuous salt separation and the enhancing effect of K3PO4 on the glycerol degradation. J Supercrit Fluids 95:364–372. doi:10.1016/j.supflu.2014.09.011 CrossRef Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: effect of glycerol and its degradation products on the continuous salt separation and the enhancing effect of K3PO4 on the glycerol degradation. J Supercrit Fluids 95:364–372. doi:10.​1016/​j.​supflu.​2014.​09.​011 CrossRef
4.
Zurück zum Zitat Elliott DC, Hart TR, Neuenschwander GG (2006) Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 45(11):3776–3781. doi:10.1021/ie060031o CrossRef Elliott DC, Hart TR, Neuenschwander GG (2006) Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 45(11):3776–3781. doi:10.​1021/​ie060031o CrossRef
5.
Zurück zum Zitat Elliott DC, Sealock LJ, Baker EG (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548. doi:10.1021/ie00020a002 CrossRef Elliott DC, Sealock LJ, Baker EG (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548. doi:10.​1021/​ie00020a002 CrossRef
6.
Zurück zum Zitat Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. doi:10.1016/j.cattod.2013.12.001 CrossRef Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. doi:10.​1016/​j.​cattod.​2013.​12.​001 CrossRef
7.
Zurück zum Zitat Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: autothermal operation, simultaneous salt recovery, and the effect of K3PO4 on the catalytic gasification. Ind Eng Chem Res 53(20):8404–8415. doi:10.1021/ie5005459 CrossRef Schubert M, Müller JB, Vogel F (2014) Continuous hydrothermal gasification of glycerol mixtures: autothermal operation, simultaneous salt recovery, and the effect of K3PO4 on the catalytic gasification. Ind Eng Chem Res 53(20):8404–8415. doi:10.​1021/​ie5005459 CrossRef
9.
Zurück zum Zitat Kruse A, Bernolle P, Dahmen N, Dinjus E, Maniam P (2010) Hydrothermal gasification of biomass: consecutive reactions to long-living intermediates. Energy Environ Sci 3(1):136–143. doi:10.1039/B915034J CrossRef Kruse A, Bernolle P, Dahmen N, Dinjus E, Maniam P (2010) Hydrothermal gasification of biomass: consecutive reactions to long-living intermediates. Energy Environ Sci 3(1):136–143. doi:10.​1039/​B915034J CrossRef
10.
Zurück zum Zitat Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32–65. doi:10.1039/B810100K CrossRef Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32–65. doi:10.​1039/​B810100K CrossRef
11.
Zurück zum Zitat Vogel F, Waldner MH, Rouff AA, Rabe S (2007) Synthetic natural gas from biomass by catalytic conversion in supercritical water. Green Chem 9(6):616–619. doi:10.1039/B614601E CrossRef Vogel F, Waldner MH, Rouff AA, Rabe S (2007) Synthetic natural gas from biomass by catalytic conversion in supercritical water. Green Chem 9(6):616–619. doi:10.​1039/​B614601E CrossRef
12.
Zurück zum Zitat Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535–541. doi:10.1039/B819874H CrossRef Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535–541. doi:10.​1039/​B819874H CrossRef
15.
Zurück zum Zitat Vogel F (2010) Catalytic conversion of high-moisture biomass to synthetic natural gas in supercritical water. In: Crabtree RH (ed) Handbook of green chemistry. Handbook of green chemistry, volume 2: heterogeneous catalysis. John Wiley & Sons, Inc. doi:10.1002/9783527628698.hgc024 Vogel F (2010) Catalytic conversion of high-moisture biomass to synthetic natural gas in supercritical water. In: Crabtree RH (ed) Handbook of green chemistry. Handbook of green chemistry, volume 2: heterogeneous catalysis. John Wiley & Sons, Inc. doi:10.​1002/​9783527628698.​hgc024
16.
Zurück zum Zitat Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967. doi:10.1038/nature01009 CrossRef Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967. doi:10.​1038/​nature01009 CrossRef
17.
Zurück zum Zitat Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B-Environ 56(1–2):171–186. doi:10.1016/j.apcatb.2004.04.027 CrossRef Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl Catal B-Environ 56(1–2):171–186. doi:10.​1016/​j.​apcatb.​2004.​04.​027 CrossRef
18.
19.
20.
Zurück zum Zitat Vogel F (2016) Hydrothermal production of SNG from wet biomass. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. John Wiley & Sons, Inc., pp 249–278. doi:10.1002/9781119191339.ch10 Vogel F (2016) Hydrothermal production of SNG from wet biomass. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. John Wiley & Sons, Inc., pp 249–278. doi:10.​1002/​9781119191339.​ch10
21.
Zurück zum Zitat Dreher M, Johnson B, Peterson AA, Nachtegaal M, Wambach J, Vogel F (2013) Catalysis in supercritical water: pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. J Catal 301:38–45. doi:10.1016/j.jcat.2013.01.018 CrossRef Dreher M, Johnson B, Peterson AA, Nachtegaal M, Wambach J, Vogel F (2013) Catalysis in supercritical water: pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. J Catal 301:38–45. doi:10.​1016/​j.​jcat.​2013.​01.​018 CrossRef
22.
Zurück zum Zitat Peterson AA, Dreher M, Wambach J, Nachtegaal M, Dahl S, Nørskov JK, Vogel F (2012) Evidence of scrambling over ruthenium-based catalysts in supercritical-water gasification. ChemCatChem 4(8):1185–1189. doi:10.1002/cctc.201100450 CrossRef Peterson AA, Dreher M, Wambach J, Nachtegaal M, Dahl S, Nørskov JK, Vogel F (2012) Evidence of scrambling over ruthenium-based catalysts in supercritical-water gasification. ChemCatChem 4(8):1185–1189. doi:10.​1002/​cctc.​201100450 CrossRef
23.
Zurück zum Zitat Peng G. (2015) Methane production from microalgae via continuous catalytic supercritical water gasification: development of catalysts and sulfur removal techniques. PhD thesis, EPFL, No. 6740 Peng G. (2015) Methane production from microalgae via continuous catalytic supercritical water gasification: development of catalysts and sulfur removal techniques. PhD thesis, EPFL, No. 6740
25.
Zurück zum Zitat Gassner M, Vogel F, Heyen G, Maréchal F (2011) Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: thermo-economic process modelling and integration. Energy Environ Sci 4(5):1726–1741. doi:10.1039/C0EE00629G Gassner M, Vogel F, Heyen G, Maréchal F (2011) Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: thermo-economic process modelling and integration. Energy Environ Sci 4(5):1726–1741. doi:10.​1039/​C0EE00629G
26.
Zurück zum Zitat Dreher M. (2013) Catalysis under extreme conditions: in situ studies of the reforming of organic key compounds in supercritical water. PhD thesis, ETH Zurich, No. 21531 Dreher M. (2013) Catalysis under extreme conditions: in situ studies of the reforming of organic key compounds in supercritical water. PhD thesis, ETH Zurich, No. 21531
27.
Zurück zum Zitat Kraft SM (2011) Modellierung und Simulation eines Festbettreaktors zur hydrothermalen Vergasung von nasser Biomasse. Master thesis, Paul Scherrer Institut/Technische Universität Wien, Vienna (Austria) Kraft SM (2011) Modellierung und Simulation eines Festbettreaktors zur hydrothermalen Vergasung von nasser Biomasse. Master thesis, Paul Scherrer Institut/Technische Universität Wien, Vienna (Austria)
28.
Zurück zum Zitat Batov DV, Zaichikov AM, Slyusar VP, Korolev VP (2001) Enthalpies of mixing and state of components in aqueous-organic mixtures with nets of hydrogen bonds. Russ J Gen Chem 71(8):1208–1214. doi:10.1023/a:1013256524865 CrossRef Batov DV, Zaichikov AM, Slyusar VP, Korolev VP (2001) Enthalpies of mixing and state of components in aqueous-organic mixtures with nets of hydrogen bonds. Russ J Gen Chem 71(8):1208–1214. doi:10.​1023/​a:​1013256524865 CrossRef
Metadaten
Titel
Hydrogen-enhanced catalytic hydrothermal gasification of biomass
verfasst von
J. Reimer
S. Müller
E. De Boni
F. Vogel
Publikationsdatum
25.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2017
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0253-y

Weitere Artikel der Ausgabe 4/2017

Biomass Conversion and Biorefinery 4/2017 Zur Ausgabe