Skip to main content

2024 | OriginalPaper | Buchkapitel

Hydrogen Storage in Double Structure Hydrates with SF6 and TBAB Presence

verfasst von : Xinying Li, Yanhong Wang, Shuanshi Fan, Xuemei Lang, Gang Li

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen (H2) is a promising clean energy source for high energy density and clean combustion products. Hydrogen storage and transport are bottlenecks of the utilization of hydrogen energy. Gas hydrates could store hydrogen molecules at moderate temperatures and pressures, offering a technology of safe, cheap hydrogen storage. However, low hydrogen storage is a major problem in developing large-scale hydrate-based hydrogen storage. In this study, in order to increase the hydrogen storage capacity, we use Sulphur hexafluoride (SF6), which can form sII hydrates, and tetrabutylammonium bromide (TBAB), which forms semiclathrate hydrates, to construct a double structure hydrate storing hydrogen. The experimental temperature was set at 274 K, and the H2 pressure was around 20 MPa. The concentration of TBAB solution ranged from 0 wt% to 40 wt%. The highest H2 storage appeared at 5 wt% of TBAB with 20 wt% SF6. The capacity of H2 reached 32 V/V (about 0.324 wt%), which is an increase of 15% compared with no TBAB added. This is due to the fact that in the early stage of hydrate formation, TBAB first form semiclathrate hydrate with water, which increases the nucleation site of sII hydrate. The coupling structure of sII and semiclathrate hydrates increases the hydrogen storage. However, as the TBAB increases, it is easy to form larger particles of TBAB hydrates. This process expends a large number of water molecules, which decrease the formation of sII hydrates, and lower the H2 storage. Raman spectra of samples with TBAB revealed that the Raman characteristic peaks of SF6 and H2 increased towards higher wave numbers compared with samples without TBAB. This showed that the introduction of TBAB increased the binding energy of the hydrate cages, enhancing the hydrogen hydrate stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Momirlan, M., Veziroglu, T.N.: Current status of hydrogen energy. Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002)CrossRef Momirlan, M., Veziroglu, T.N.: Current status of hydrogen energy. Renew. Sustain. Energy Rev. 6(1–2), 141–179 (2002)CrossRef
2.
Zurück zum Zitat Hoffman, K., Reilly, J., Salzano, F., et al.: Metal hydride storage for mobile and stationary applications. Int. J. Hydrogen Energy 1(2), 133–151 (1976)CrossRef Hoffman, K., Reilly, J., Salzano, F., et al.: Metal hydride storage for mobile and stationary applications. Int. J. Hydrogen Energy 1(2), 133–151 (1976)CrossRef
3.
Zurück zum Zitat Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978)CrossRef Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978)CrossRef
4.
Zurück zum Zitat Yadav, M., Xu, Q.: Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5(12), 9698 (2012)CrossRef Yadav, M., Xu, Q.: Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5(12), 9698 (2012)CrossRef
5.
Zurück zum Zitat Chen, S., Wang, Y., Lang, X., et al.: Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure. Energy 268, 126638 (2023)CrossRef Chen, S., Wang, Y., Lang, X., et al.: Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure. Energy 268, 126638 (2023)CrossRef
6.
Zurück zum Zitat Mao, W.L., Mao, H.: Hydrogen storage in molecular compounds. Proc. Natl. Acad. Sci. 101(3), 708–710 (2004)CrossRef Mao, W.L., Mao, H.: Hydrogen storage in molecular compounds. Proc. Natl. Acad. Sci. 101(3), 708–710 (2004)CrossRef
7.
Zurück zum Zitat Zhang, Y., Bhattacharjee, G., Kumar, R., et al.: Solidified hydrogen storage (solid-hystore) via clathrate hydrates. Chem. Eng. J. 431, 133702 (2022)CrossRef Zhang, Y., Bhattacharjee, G., Kumar, R., et al.: Solidified hydrogen storage (solid-hystore) via clathrate hydrates. Chem. Eng. J. 431, 133702 (2022)CrossRef
8.
Zurück zum Zitat Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef Florusse, L.J., Peters, C.J., Schoonman, J., et al.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469–471 (2004)CrossRef
9.
Zurück zum Zitat Hashimoto, S., Sugahara, T., Sato, H., et al.: Thermodynamic stability of H2+ tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions. J. Chem. Eng. Data 52(2), 517–520 (2007)CrossRef Hashimoto, S., Sugahara, T., Sato, H., et al.: Thermodynamic stability of H2+ tetrahydrofuran mixed gas hydrate in nonstoichiometric aqueous solutions. J. Chem. Eng. Data 52(2), 517–520 (2007)CrossRef
10.
Zurück zum Zitat Chen, Y., Takeya, S., Sum, A.K.: Topological dual and extended relations between networks of clathrate hydrates and Frank-Kasper phases. Nature Commun. 14(1) (2023) Chen, Y., Takeya, S., Sum, A.K.: Topological dual and extended relations between networks of clathrate hydrates and Frank-Kasper phases. Nature Commun. 14(1) (2023)
11.
Zurück zum Zitat Liu, H., Zhan, S., Li, R., et al.: High-efficiency natural-gas storage method involving formation of gas hydrate in water/oil-cyclopentane emulsion. Chem. Eng. J. 400, 125369 (2020)CrossRef Liu, H., Zhan, S., Li, R., et al.: High-efficiency natural-gas storage method involving formation of gas hydrate in water/oil-cyclopentane emulsion. Chem. Eng. J. 400, 125369 (2020)CrossRef
12.
Zurück zum Zitat Yang, M., Jing, W., Zhao, J., et al.: Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF+TBAB). Energy 106, 546–553 (2016)CrossRef Yang, M., Jing, W., Zhao, J., et al.: Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF+TBAB). Energy 106, 546–553 (2016)CrossRef
13.
Zurück zum Zitat Zhang, J., Li, Y., Yin, Z., et al.: Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 467, 143459 (2023)CrossRef Zhang, J., Li, Y., Yin, Z., et al.: Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chem. Eng. J. 467, 143459 (2023)CrossRef
14.
Zurück zum Zitat Mahmoudi, B., Naeiji, P., Varaminian, F.: Study of tetra-n-butylammonium bromide and tetrahydrofuran hydrate formation kinetics as a cold storage material for air conditioning system. J. Mol. Liq. 214, 96–100 (2016)CrossRef Mahmoudi, B., Naeiji, P., Varaminian, F.: Study of tetra-n-butylammonium bromide and tetrahydrofuran hydrate formation kinetics as a cold storage material for air conditioning system. J. Mol. Liq. 214, 96–100 (2016)CrossRef
15.
Zurück zum Zitat Sun, Z., Dai, M., Zhu, M., et al.: Improving THF hydrate formation in the presence of nonanoic acid. J. Mol. Liq. 299, 112188 (2020)CrossRef Sun, Z., Dai, M., Zhu, M., et al.: Improving THF hydrate formation in the presence of nonanoic acid. J. Mol. Liq. 299, 112188 (2020)CrossRef
16.
Zurück zum Zitat Sugahara, T., Haag, J.C., Prasad, P.S.R., et al.: Increasing hydrogen storage capacity using tetrahydrofuran. J. Am. Chem. Soc. 131(41), 14616–14617 (2009)CrossRef Sugahara, T., Haag, J.C., Prasad, P.S.R., et al.: Increasing hydrogen storage capacity using tetrahydrofuran. J. Am. Chem. Soc. 131(41), 14616–14617 (2009)CrossRef
17.
Zurück zum Zitat Lu, H., Wang, J., Liu, C., et al.: Multiple H2 occupancy of cages of clathrate hydrate under mild conditions. J. Am. Chem. Soc. 134(22), 9160–9162 (2012)CrossRef Lu, H., Wang, J., Liu, C., et al.: Multiple H2 occupancy of cages of clathrate hydrate under mild conditions. J. Am. Chem. Soc. 134(22), 9160–9162 (2012)CrossRef
18.
Zurück zum Zitat Park, D., Lee, B.R., Sa, J., et al.: Gas-hydrate phase equilibrium for mixtures of sulfur hexafluoride and hydrogen. J. Chem. Eng. Data 57(5), 1433–1436 (2012)CrossRef Park, D., Lee, B.R., Sa, J., et al.: Gas-hydrate phase equilibrium for mixtures of sulfur hexafluoride and hydrogen. J. Chem. Eng. Data 57(5), 1433–1436 (2012)CrossRef
19.
Zurück zum Zitat Chen, S., Wang, Y., Lang, X., et al.: Phase equilibrium of hydrogen clathrate hydrates with Propylene Oxide and 1,2-Epoxycyclopentane. J. Chem. Eng. Data 68(5), 1184–1190 (2023)CrossRef Chen, S., Wang, Y., Lang, X., et al.: Phase equilibrium of hydrogen clathrate hydrates with Propylene Oxide and 1,2-Epoxycyclopentane. J. Chem. Eng. Data 68(5), 1184–1190 (2023)CrossRef
20.
Zurück zum Zitat Strobel, T.A., Koh, C.A., Sloan, E.D.: Hydrogen storage properties of clathrate hydrate materials. Fluid Phase Equilib.Equilib. 261(1–2), 382–389 (2007)CrossRef Strobel, T.A., Koh, C.A., Sloan, E.D.: Hydrogen storage properties of clathrate hydrate materials. Fluid Phase Equilib.Equilib. 261(1–2), 382–389 (2007)CrossRef
21.
Zurück zum Zitat Veluswamy, H.P., Yew, J.C., Linga, P.: New hydrate phase equilibrium data for two binary gas mixtures of hydrogen and propane coupled with a kinetic study. J. Chem. Eng. Data 60(2), 228–237 (2015)CrossRef Veluswamy, H.P., Yew, J.C., Linga, P.: New hydrate phase equilibrium data for two binary gas mixtures of hydrogen and propane coupled with a kinetic study. J. Chem. Eng. Data 60(2), 228–237 (2015)CrossRef
22.
Zurück zum Zitat Zhdanov, R.K., Gets, K.V., Belosludov, R.V., et al.: Theoretical modeling of the thermodynamic properties and the phase diagram of binary gas hydrates of argon and hydrogen. Fluid Phase Equilib.Equilib. 434, 87–92 (2017)CrossRef Zhdanov, R.K., Gets, K.V., Belosludov, R.V., et al.: Theoretical modeling of the thermodynamic properties and the phase diagram of binary gas hydrates of argon and hydrogen. Fluid Phase Equilib.Equilib. 434, 87–92 (2017)CrossRef
23.
Zurück zum Zitat Dellis, D., Samios, J.: Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib.Equilib. 291(1), 81–89 (2010)CrossRef Dellis, D., Samios, J.: Molecular force field investigation for Sulfur Hexafluoride: a computer simulation study. Fluid Phase Equilib.Equilib. 291(1), 81–89 (2010)CrossRef
24.
Zurück zum Zitat Lee, B.R., Lee, J.D., Lee, H.J., et al.: Surfactant effects on SF6 hydrate formation. J. Colloid Interface Sci. 331(1), 55–59 (2009)CrossRef Lee, B.R., Lee, J.D., Lee, H.J., et al.: Surfactant effects on SF6 hydrate formation. J. Colloid Interface Sci. 331(1), 55–59 (2009)CrossRef
25.
Zurück zum Zitat Futera, Z., Celli, M.: Vibrational modes of hydrogen hydrates: a first-principles molecular dynamics and Raman spectra study. J. Phys. Chem. C 121(7), 3690–3696 (2017)CrossRef Futera, Z., Celli, M.: Vibrational modes of hydrogen hydrates: a first-principles molecular dynamics and Raman spectra study. J. Phys. Chem. C 121(7), 3690–3696 (2017)CrossRef
26.
Zurück zum Zitat Lu, Q., He, X., Hu, W., et al.: Stability, vibrations, and diffusion of hydrogen gas in clathrate hydrates: insights from Ab initio calculations on condensed-phase crystalline structures. J. Phys. Chem. C 123(19), 12052–12061 (2019)CrossRef Lu, Q., He, X., Hu, W., et al.: Stability, vibrations, and diffusion of hydrogen gas in clathrate hydrates: insights from Ab initio calculations on condensed-phase crystalline structures. J. Phys. Chem. C 123(19), 12052–12061 (2019)CrossRef
27.
Zurück zum Zitat Trueba, A.T., Radović, I.R., Zevenbergen, J.F., et al.: Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen–tetrabutylammonium bromide semi-hydrates. Int. J. Hydrogen Energy 37(7), 5790–5797 (2012)CrossRef Trueba, A.T., Radović, I.R., Zevenbergen, J.F., et al.: Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen–tetrabutylammonium bromide semi-hydrates. Int. J. Hydrogen Energy 37(7), 5790–5797 (2012)CrossRef
28.
Zurück zum Zitat Saikia, T., Patil, S., Sultan, A.: Hydrogen hydrate promoters for gas storage—a review. Energies 16(6), 2667 (2023)CrossRef Saikia, T., Patil, S., Sultan, A.: Hydrogen hydrate promoters for gas storage—a review. Energies 16(6), 2667 (2023)CrossRef
29.
Zurück zum Zitat Chazallon, B., Ziskind, M., Carpentier, Y., et al.: CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration. J. Phys. Chem. B 118(47), 13440–13452 (2014)CrossRef Chazallon, B., Ziskind, M., Carpentier, Y., et al.: CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration. J. Phys. Chem. B 118(47), 13440–13452 (2014)CrossRef
30.
Zurück zum Zitat Sa, J., Kwak, G., Han, K., et al.: Gas hydrate inhibition by perturbation of liquid water structure. Sci. Rep. 5(1) (2015) Sa, J., Kwak, G., Han, K., et al.: Gas hydrate inhibition by perturbation of liquid water structure. Sci. Rep. 5(1) (2015)
31.
Zurück zum Zitat Lo, C., Zhang, J., Somasundaran, P., et al.: Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules. J. Phys. Chem. Lett. 1(18), 2676–2679 (2010)CrossRef Lo, C., Zhang, J., Somasundaran, P., et al.: Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules. J. Phys. Chem. Lett. 1(18), 2676–2679 (2010)CrossRef
Metadaten
Titel
Hydrogen Storage in Double Structure Hydrates with SF6 and TBAB Presence
verfasst von
Xinying Li
Yanhong Wang
Shuanshi Fan
Xuemei Lang
Gang Li
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_33