Skip to main content

2024 | OriginalPaper | Buchkapitel

Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization

verfasst von : Zhengxiang Xu, Xuemei Lang, Shuanshi Fan, Gang Li, Yanhong Wang

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural gas hydrates, as a novel gas separation technology, hold significant promise for the separation of CO2 from flue gas. In this study, a comprehensive analysis integrating hydrate-based technology and membrane separation technology is conducted to establish a post-combustion CO2 capture process. The heat calculation of the hydrate unit in the separation process is performed based on experimental CO2/N2 hydrate separation data, leading to a heat value of 1,104,662 MJ/h for the formation and decomposition of hydrates. In the membrane separation unit, the mathematical model of hollow fiber membranes is employed to conduct an optimization process for the membrane area and inlet pressure. The optimization objectives focus on attaining a product gas with a CO2 concentration of 90 mol% and a CO2 recovery rate of 95%. As a result, the first-stage membrane area is determined to be 8000 m2 and the inlet pressure to be 1.45 MPa, while for the second-stage, the optimal values are found to be 5000 m2 for the membrane area and 2.00 MPa for the inlet pressure. Finally, following the optimization of the energy consumption throughout the entire process, a comprehensive analysis is carried out to assess the energy consumption and energy efficiency of the process. The findings reveal that the most significant energy losses in the process occur during the initial pressurization phase of the feed gas and the subsequent formation and decomposition stages of the hydrates. Additionally, the unit energy cost for CO2 capture is calculated to be 0.4416 kWh/kg CO2. In comparison to alternative post-combustion CO2 capture technologies, this process exhibits distinct advantages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Olivier, J.G.J., Schure, K.M., Peters, J.A.H.W.: Trends in global CO2 and total greenhouse gas emissions. PBL Neth. Environ. Assess. Agency 5, 1–11 (2017) Olivier, J.G.J., Schure, K.M., Peters, J.A.H.W.: Trends in global CO2 and total greenhouse gas emissions. PBL Neth. Environ. Assess. Agency 5, 1–11 (2017)
2.
Zurück zum Zitat Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1), 431–441 (2012) Mondal, M.K., Balsora, H.K., Varshney, P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46(1), 431–441 (2012)
3.
Zurück zum Zitat Khatib, H.: IEA world energy outlook 2010—a comment. Energy Policy 39(5), 2507–2511 (2011)CrossRef Khatib, H.: IEA world energy outlook 2010—a comment. Energy Policy 39(5), 2507–2511 (2011)CrossRef
4.
Zurück zum Zitat Zhang, J., Yedlapalli, P., Lee, J.W.: Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem. Eng. Sci. 64(22), 4732–4736 (2009)CrossRef Zhang, J., Yedlapalli, P., Lee, J.W.: Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem. Eng. Sci. 64(22), 4732–4736 (2009)CrossRef
5.
Zurück zum Zitat Hanak, D.P., Manovic, V.: Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer. Fuel 214, 512–520 (2018)CrossRef Hanak, D.P., Manovic, V.: Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer. Fuel 214, 512–520 (2018)CrossRef
6.
Zurück zum Zitat Wang, M., et al.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011) Wang, M., et al.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011)
7.
Zurück zum Zitat Zhao, H., et al.: Carbon-based adsorbents for post-combustion capture: a review. Greenhouse Gases Sci. Technol. 8(1), 11–36 (2018) Zhao, H., et al.: Carbon-based adsorbents for post-combustion capture: a review. Greenhouse Gases Sci. Technol. 8(1), 11–36 (2018)
8.
Zurück zum Zitat Song, C., et al.: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 101, 265–278 (2019) Song, C., et al.: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 101, 265–278 (2019)
9.
Zurück zum Zitat Arias, A.M., et al.: Optimization of multi-stage membrane systems for CO2 capture from flue gas. Int. J. Greenhouse Gas Control 53, 371–390 (2016) Arias, A.M., et al.: Optimization of multi-stage membrane systems for CO2 capture from flue gas. Int. J. Greenhouse Gas Control 53, 371–390 (2016)
10.
Zurück zum Zitat Songolzadeh, M., et al.: Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 828131 (2014) Songolzadeh, M., et al.: Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 828131 (2014)
11.
Zurück zum Zitat Cheng, Z., et al.: Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renew. Sustain. Energy Rev. 154, 111806 (2022) Cheng, Z., et al.: Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renew. Sustain. Energy Rev. 154, 111806 (2022)
12.
Zurück zum Zitat Chong, Z.R., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016) Chong, Z.R., et al.: Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)
13.
Zurück zum Zitat Yang, M., et al.: Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl. Energy 116, 26–40 (2014) Yang, M., et al.: Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl. Energy 116, 26–40 (2014)
14.
Zurück zum Zitat Sloan Jr, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003) Sloan Jr, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426(6964), 353–359 (2003)
15.
Zurück zum Zitat Eslamimanesh, A., et al.: Application of gas hydrate formation in separation processes: a review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012) Eslamimanesh, A., et al.: Application of gas hydrate formation in separation processes: a review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012)
16.
Zurück zum Zitat Komatsu, H., et al.: Separation processes for carbon dioxide capture with semi-clathrate hydrate slurry based on phase equilibria of CO2+ N2+ tetra-n-butylammonium bromide+ water systems. Chem. Eng. Res. Des. 150, 289–298 (2019) Komatsu, H., et al.: Separation processes for carbon dioxide capture with semi-clathrate hydrate slurry based on phase equilibria of CO2+ N2+ tetra-n-butylammonium bromide+ water systems. Chem. Eng. Res. Des. 150, 289–298 (2019)
17.
Zurück zum Zitat Babu, P., et al.: A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261–279 (2015) Babu, P., et al.: A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85, 261–279 (2015)
18.
Zurück zum Zitat Xu, C.-G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv. 4(35), 18301–18316 (2014)CrossRef Xu, C.-G., Li, X.-S.: Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv. 4(35), 18301–18316 (2014)CrossRef
19.
Zurück zum Zitat Partoon, B., et al.: Production of gas hydrate in a semi-batch spray reactor process as a means for separation of carbon dioxide from methane. Chem. Eng. Res. Des. 138, 168–175 (2018) Partoon, B., et al.: Production of gas hydrate in a semi-batch spray reactor process as a means for separation of carbon dioxide from methane. Chem. Eng. Res. Des. 138, 168–175 (2018)
20.
Zurück zum Zitat Dashti, H., Yew, L.Z., Lou, X.: Recent advances in gas hydrate-based CO2 capture. J. Nat. Gas Sci. Eng. 23, 195–207 (2015) Dashti, H., Yew, L.Z., Lou, X.: Recent advances in gas hydrate-based CO2 capture. J. Nat. Gas Sci. Eng. 23, 195–207 (2015)
21.
Zurück zum Zitat Tajima, H., Yamasaki, A., Kiyono, F.: Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29(11), 1713–1729 (2004)CrossRef Tajima, H., Yamasaki, A., Kiyono, F.: Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29(11), 1713–1729 (2004)CrossRef
22.
Zurück zum Zitat Xie, N., et al.: Energy consumption and exergy analysis of MEA-based and hydrate-based CO2 separation. Ind. Eng. Chem. Res. 56(51), 15094–15101 (2017) Xie, N., et al.: Energy consumption and exergy analysis of MEA-based and hydrate-based CO2 separation. Ind. Eng. Chem. Res. 56(51), 15094–15101 (2017)
23.
Zurück zum Zitat Chang, P.T., et al.: A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture. Chem. Eng. Commun. 209(11), 1553–1569 (2022) Chang, P.T., et al.: A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture. Chem. Eng. Commun. 209(11), 1553–1569 (2022)
24.
Zurück zum Zitat Zhang, X., He, X., Gundersen, T.: Post-combustion carbon capture with a gas separation membrane: parametric study, capture cost, and exergy analysis. Energy Fuels 27(8), 4137–4149 (2013)CrossRef Zhang, X., He, X., Gundersen, T.: Post-combustion carbon capture with a gas separation membrane: parametric study, capture cost, and exergy analysis. Energy Fuels 27(8), 4137–4149 (2013)CrossRef
25.
Zurück zum Zitat Roussanaly, S., et al.: Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J. Membr. Sci. 511, 250–264 (2016) Roussanaly, S., et al.: Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J. Membr. Sci. 511, 250–264 (2016)
26.
Zurück zum Zitat Mat, N.C., Lipscomb, G.G.: Membrane process optimization for carbon capture. Int. J. Greenhouse Gas Control 62, 1–12 (2017) Mat, N.C., Lipscomb, G.G.: Membrane process optimization for carbon capture. Int. J. Greenhouse Gas Control 62, 1–12 (2017)
27.
Zurück zum Zitat Merkel, T.C., et al.: Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359(1–2), 126–139 (2010) Merkel, T.C., et al.: Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci. 359(1–2), 126–139 (2010)
28.
Zurück zum Zitat Huang, Y., Merkel, T.C., Baker, R.W.: Pressure ratio and its impact on membrane gas separation processes. J. Membr. Sci. 463, 33–40 (2014)CrossRef Huang, Y., Merkel, T.C., Baker, R.W.: Pressure ratio and its impact on membrane gas separation processes. J. Membr. Sci. 463, 33–40 (2014)CrossRef
29.
Zurück zum Zitat Interlenghi, S.F., de Medeiros, J.L., Ofélia de Queiroz, F.A.: On small-scale liquefaction of natural gas with supersonic separator: Energy Second Law Anal. Energy Convers. Manag. 221, 113117 (2020) Interlenghi, S.F., de Medeiros, J.L., Ofélia de Queiroz, F.A.: On small-scale liquefaction of natural gas with supersonic separator: Energy Second Law Anal. Energy Convers. Manag. 221, 113117 (2020)
30.
Zurück zum Zitat Mehrpooya, M., Khodayari, R., Moosavian, S.M.A., et al.: Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system. Energy Convers. Manage. 221, 113177 (2020)CrossRef Mehrpooya, M., Khodayari, R., Moosavian, S.M.A., et al.: Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system. Energy Convers. Manage. 221, 113177 (2020)CrossRef
31.
Zurück zum Zitat Sloan, E.D., Fleyfel, F.: Hydrate dissociation enthalpy and guest size. Fluid Phase Equilib. 76, 123–140 (1992)CrossRef Sloan, E.D., Fleyfel, F.: Hydrate dissociation enthalpy and guest size. Fluid Phase Equilib. 76, 123–140 (1992)CrossRef
33.
Zurück zum Zitat Fan, S., et al.: Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23(8), 4202–4208 (2009) Fan, S., et al.: Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23(8), 4202–4208 (2009)
34.
Zurück zum Zitat Hashimoto, H., Ozeki, H., Yamamoto, Y., et al.: CO2 capture from flue gas based on tetra-n-butylammonium fluoride hydrates at near ambient temperature. ACS Omega 5(13), 7115–7123 (2020)CrossRef Hashimoto, H., Ozeki, H., Yamamoto, Y., et al.: CO2 capture from flue gas based on tetra-n-butylammonium fluoride hydrates at near ambient temperature. ACS Omega 5(13), 7115–7123 (2020)CrossRef
35.
Zurück zum Zitat Patel, N.C., Teja, A.S.: A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 37(3), 463–473 (1982)CrossRef Patel, N.C., Teja, A.S.: A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 37(3), 463–473 (1982)CrossRef
37.
Zurück zum Zitat Han, H., Scofield, J.M.P., Gurr, P.A., et al.: Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. Chem. Eng. J. 462, 142087 (2023)CrossRef Han, H., Scofield, J.M.P., Gurr, P.A., et al.: Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. Chem. Eng. J. 462, 142087 (2023)CrossRef
38.
Zurück zum Zitat Oh, S.Y., Binns, M., Cho, H., et al.: Energy minimization of MEA-based CO2 capture process. Appl. Energy 169, 353–362 (2016)CrossRef Oh, S.Y., Binns, M., Cho, H., et al.: Energy minimization of MEA-based CO2 capture process. Appl. Energy 169, 353–362 (2016)CrossRef
39.
Zurück zum Zitat Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., et al.: CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine. Int. J. Greenhouse Gas Control 1(1), 37–46 (2007) Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., et al.: CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine. Int. J. Greenhouse Gas Control 1(1), 37–46 (2007)
40.
Zurück zum Zitat Song, C.F., et al.: Parametric analysis of a novel cryogenic CO2 capture system based on Stirling coolers. Environ. Sci. Technol. 46(22), 12735–12741 (2012) Song, C.F., et al.: Parametric analysis of a novel cryogenic CO2 capture system based on Stirling coolers. Environ. Sci. Technol. 46(22), 12735–12741 (2012)
41.
Zurück zum Zitat Wang, L., Yang, Y., Shen, W., et al.: CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind. Eng. Chem. Res. 52(23), 7947–7955 (2013)CrossRef Wang, L., Yang, Y., Shen, W., et al.: CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind. Eng. Chem. Res. 52(23), 7947–7955 (2013)CrossRef
42.
Zurück zum Zitat Agarwal, A., Biegler, L.T., Zitney, S.E.: A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. AIChE J. 56(7), 1813–1828 (2010)CrossRef Agarwal, A., Biegler, L.T., Zitney, S.E.: A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture. AIChE J. 56(7), 1813–1828 (2010)CrossRef
43.
Zurück zum Zitat Liu, Z., et al.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51(21), 7355–7363 (2012) Liu, Z., et al.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51(21), 7355–7363 (2012)
44.
Zurück zum Zitat Scholes, C.A., et al.: Membrane gas separation processes for CO2 capture from cement kiln flue gas. Int. J. Greenhouse Gas Control 24, 78–86 (2014) Scholes, C.A., et al.: Membrane gas separation processes for CO2 capture from cement kiln flue gas. Int. J. Greenhouse Gas Control 24, 78–86 (2014)
Metadaten
Titel
Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization
verfasst von
Zhengxiang Xu
Xuemei Lang
Shuanshi Fan
Gang Li
Yanhong Wang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_34