Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 3/2024

15.03.2024 | ORIGINAL ARTICLE

Hydrogen sulfide removal from biogas using biomass-derived naturally alkaline biochars: performance analysis and kinetics

verfasst von: Deep Bora, Kuldeep Roy, Pinakeswar Mahanta, Lepakshi Barbora

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Removing hydrogen sulphide (H2S) from decentralized biogas plants by local upgrading techniques may prove to be an economical option for biogas purification, particularly in rural regions. In the present study, readily available biomass viz. bamboo and banana peel were used to prepare biochar and employed for H2S removal from raw biogas produced via a 3 m3 Deenbandhu model biogas plant. The physical and chemical properties of fresh and used biochars were compared using several analytical techniques such as pH, EDX, FESEM, FT-IR, and XRD. The highest, 89.2% and 87.7% of H2S were removed from the raw biogas using banana peel and bamboo biochar utilizing the packed bed system. Four kinetic models viz. pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were fitted to evaluate the kinetics of H2S adsorption on bamboo and banana peel biochar. Kinetic study exhibited that the H2S adsorption for both the biochars followed the pseudo-second-order kinetic model with R2 = 0.99. The high potential of the adsorbents for H2S removal, the ease of availability of raw materials, the simplicity of fabrication and utilization method of the adsorbents renders it as a potential candidate for biogas desulphurization in small scale biogas plants installed at rural areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valorizat 8:267–283CrossRef Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valorizat 8:267–283CrossRef
2.
Zurück zum Zitat Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefining 3:42–71CrossRef Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefining 3:42–71CrossRef
3.
Zurück zum Zitat Kadam R, Panwar N (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903CrossRef Kadam R, Panwar N (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903CrossRef
4.
Zurück zum Zitat Chen S, Cheng YF, Voordouw G (2017) A comparative study of corrosion of 316L stainless steel in biotic and abiotic sulfide environments. Int Biodeterior Biodegrad 120:91–96CrossRef Chen S, Cheng YF, Voordouw G (2017) A comparative study of corrosion of 316L stainless steel in biotic and abiotic sulfide environments. Int Biodeterior Biodegrad 120:91–96CrossRef
5.
Zurück zum Zitat Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilization—a review. Energy Convers Manag 52:3369–3375CrossRef Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilization—a review. Energy Convers Manag 52:3369–3375CrossRef
6.
Zurück zum Zitat Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202CrossRef Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30(8):1195–1202CrossRef
7.
Zurück zum Zitat Janssen A, Ruitenberg R, Buisman C (2001) Industrial applications of new sulfur biotechnology. Wat Sci Technol 44:85–90CrossRef Janssen A, Ruitenberg R, Buisman C (2001) Industrial applications of new sulfur biotechnology. Wat Sci Technol 44:85–90CrossRef
8.
Zurück zum Zitat Krischan J, Makaruk A, Harasek M (2010) Design and scale-up of an oxidative scrubbing process for selective removal of hydrogen sulfide from biogas. J Hazard Mater 49:215–216 Krischan J, Makaruk A, Harasek M (2010) Design and scale-up of an oxidative scrubbing process for selective removal of hydrogen sulfide from biogas. J Hazard Mater 49:215–216
9.
Zurück zum Zitat Lee EY, Lee NY, Cho KS, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant acidithiobacillusthiooxidans AZ11. J Biosci Bioeng 101(4):309–314CrossRef Lee EY, Lee NY, Cho KS, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant acidithiobacillusthiooxidans AZ11. J Biosci Bioeng 101(4):309–314CrossRef
10.
Zurück zum Zitat Abushammala MFM, Qazi WA, Azam MH, Mehmood UA, Al-Mufragi GA, Alrawahi NA (2016) Generation of electricity from biogas in Oman. In: 3rd MEC International Conference on Big Data and Smart City Abushammala MFM, Qazi WA, Azam MH, Mehmood UA, Al-Mufragi GA, Alrawahi NA (2016) Generation of electricity from biogas in Oman. In: 3rd MEC International Conference on Big Data and Smart City
11.
Zurück zum Zitat Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M (2011) Effect of oxygen dosing point and mixing on the micro aerobic removal of hydrogen sulfide in sludge digesters. Bioresour Technol 102:3768–3775CrossRef Díaz I, Pérez SI, Ferrero EM, Fdz-Polanco M (2011) Effect of oxygen dosing point and mixing on the micro aerobic removal of hydrogen sulfide in sludge digesters. Bioresour Technol 102:3768–3775CrossRef
12.
Zurück zum Zitat Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645CrossRef Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645CrossRef
13.
Zurück zum Zitat Wellinger A, Lindberg A (2000) Biogas upgrading and utilization. IEA Bioenergy, Task 24 Wellinger A, Lindberg A (2000) Biogas upgrading and utilization. IEA Bioenergy, Task 24
14.
Zurück zum Zitat Ramírez-Sáenz D, Zarate-Segura PB, Guerrero-Barajas C, Garcia-Peña EI (2009) H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J Hazard Mater 163:1272–1281CrossRef Ramírez-Sáenz D, Zarate-Segura PB, Guerrero-Barajas C, Garcia-Peña EI (2009) H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J Hazard Mater 163:1272–1281CrossRef
15.
Zurück zum Zitat Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Bio/Technol 14:727–759CrossRef Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Bio/Technol 14:727–759CrossRef
16.
Zurück zum Zitat Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. IEA Bioenergy 20:1–19 Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. IEA Bioenergy 20:1–19
17.
Zurück zum Zitat MohamadNor N, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1:658–666CrossRef MohamadNor N, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1:658–666CrossRef
18.
Zurück zum Zitat Papurello D, Silvestri S, Lanzini A (2019) Biogas cleaning: trace compounds removal with model validation. Sep Purif Technol 210:80–92CrossRef Papurello D, Silvestri S, Lanzini A (2019) Biogas cleaning: trace compounds removal with model validation. Sep Purif Technol 210:80–92CrossRef
19.
Zurück zum Zitat Surra E, Nogueira MC, Bernardo M, Lapa N, Esteves I, Fonseca I (2019) New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Manag 94:136–145CrossRef Surra E, Nogueira MC, Bernardo M, Lapa N, Esteves I, Fonseca I (2019) New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Manag 94:136–145CrossRef
20.
Zurück zum Zitat Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769CrossRef Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769CrossRef
21.
Zurück zum Zitat Shang G, Shen G, Wang T, Chen Q (2012) Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar. J Air Waste Manag Assoc 62:873–879CrossRef Shang G, Shen G, Wang T, Chen Q (2012) Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar. J Air Waste Manag Assoc 62:873–879CrossRef
22.
Zurück zum Zitat Van-Zwieten L, Kimber S, Morris S, Chan KY, Downie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246CrossRef Van-Zwieten L, Kimber S, Morris S, Chan KY, Downie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246CrossRef
23.
Zurück zum Zitat Inyang M, Gao B, Yao Y, Xue YW, Zimmerman A (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56CrossRef Inyang M, Gao B, Yao Y, Xue YW, Zimmerman A (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56CrossRef
24.
Zurück zum Zitat Akio E, Kelly H, Thea W (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef Akio E, Kelly H, Thea W (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653CrossRef
25.
Zurück zum Zitat Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179CrossRef Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179CrossRef
26.
Zurück zum Zitat Tan Z, Lin CSK, Ji X, Rainey TJ (2017) Returning biochar to fields: a review. Appl Soil Ecol 116:1–11CrossRef Tan Z, Lin CSK, Ji X, Rainey TJ (2017) Returning biochar to fields: a review. Appl Soil Ecol 116:1–11CrossRef
27.
Zurück zum Zitat Xu X, Cao X, Zhao L, Sun T (2014) Comparison of sewage sludge- and pig manure derived biochars for hydrogen sulfide removal. Chemosphere 111:296–303CrossRef Xu X, Cao X, Zhao L, Sun T (2014) Comparison of sewage sludge- and pig manure derived biochars for hydrogen sulfide removal. Chemosphere 111:296–303CrossRef
28.
Zurück zum Zitat Sahota S, Vijay VK, Subbarao PMV, Chandra R, Ghosh P, Shah G, Kapoor R, Vijay V, Koutu V, Thakur IS (2018) Characterization of leaf waste based biochar for cost effective hydrogen sulfide removal from biogas. Biores Technol 250:635–641CrossRef Sahota S, Vijay VK, Subbarao PMV, Chandra R, Ghosh P, Shah G, Kapoor R, Vijay V, Koutu V, Thakur IS (2018) Characterization of leaf waste based biochar for cost effective hydrogen sulfide removal from biogas. Biores Technol 250:635–641CrossRef
29.
Zurück zum Zitat Pelaez-Samaniego MR, Smith MW, Zhao Q, Garcia-Perez T, Frear C, Garcia-Perez M (2018) Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas. Waste Manag 76:374–382CrossRef Pelaez-Samaniego MR, Smith MW, Zhao Q, Garcia-Perez T, Frear C, Garcia-Perez M (2018) Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas. Waste Manag 76:374–382CrossRef
30.
Zurück zum Zitat Sun Y, Yang G, Zhang L, Sun Z (2017) Preparation of high performance H2S removal biochar by direct fluidized bed carbonization using potato peel waste. Process Saf Environ Prot 107:281–288CrossRef Sun Y, Yang G, Zhang L, Sun Z (2017) Preparation of high performance H2S removal biochar by direct fluidized bed carbonization using potato peel waste. Process Saf Environ Prot 107:281–288CrossRef
31.
Zurück zum Zitat Choudhury A, Lansing S (2021) Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng 9:104837CrossRef Choudhury A, Lansing S (2021) Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng 9:104837CrossRef
32.
Zurück zum Zitat Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) H2S-Selective catalytic oxidation: catalysts and processes. ACS Catal 5:1053–1067CrossRef Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) H2S-Selective catalytic oxidation: catalysts and processes. ACS Catal 5:1053–1067CrossRef
33.
Zurück zum Zitat Deka DC, Talukdar NN (2007) Chemical and spectroscopic investigation of kolakhar and its commercial importance. Indian J Tradit Knowl 6(1):72–78 Deka DC, Talukdar NN (2007) Chemical and spectroscopic investigation of kolakhar and its commercial importance. Indian J Tradit Knowl 6(1):72–78
34.
Zurück zum Zitat Sahoo SS, Vijay VK, Chandra R, Kumar H (2021) Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean Eng Technol 3:100101CrossRef Sahoo SS, Vijay VK, Chandra R, Kumar H (2021) Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean Eng Technol 3:100101CrossRef
35.
Zurück zum Zitat Mulu E, M’Arimi MM, Ramkat RC, Mecha AC (2021) Potential of wood ash in purification of biogas. Energy Sustain Dev 65:45–52CrossRef Mulu E, M’Arimi MM, Ramkat RC, Mecha AC (2021) Potential of wood ash in purification of biogas. Energy Sustain Dev 65:45–52CrossRef
36.
Zurück zum Zitat Pan M, Lin X, Xie J, Huang X (2017) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Adv 7:4492–4500CrossRef Pan M, Lin X, Xie J, Huang X (2017) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Adv 7:4492–4500CrossRef
37.
Zurück zum Zitat Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38 Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38
38.
Zurück zum Zitat Ahmed A, Bakar MSA, Hamdani R, Park YK, Lam SS, Sukri RS, Hussain M, Majeed K, Phusunti N, Jamil F, Aslam M (2020) Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other valueadded applications. Environ Res 186:109596CrossRef Ahmed A, Bakar MSA, Hamdani R, Park YK, Lam SS, Sukri RS, Hussain M, Majeed K, Phusunti N, Jamil F, Aslam M (2020) Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other valueadded applications. Environ Res 186:109596CrossRef
39.
Zurück zum Zitat Khuenkaeo N, Tippayawong N (2020) Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem Eng Commun 207:153–160CrossRef Khuenkaeo N, Tippayawong N (2020) Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem Eng Commun 207:153–160CrossRef
40.
Zurück zum Zitat Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw- Hill, New York Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw- Hill, New York
41.
Zurück zum Zitat Shinogi Y, Kanri Y (2003) Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour Technol 90:241–247CrossRef Shinogi Y, Kanri Y (2003) Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour Technol 90:241–247CrossRef
42.
Zurück zum Zitat Adib F, Bagreev A, Bandosz TJ (2000) Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons. Environ Sci Technol 34:686–692CrossRef Adib F, Bagreev A, Bandosz TJ (2000) Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons. Environ Sci Technol 34:686–692CrossRef
43.
Zurück zum Zitat Sitthikhankaew R, Chadwick D, Assabumrungrat S, Laosiripojana N (2014) Effects of humidity, O2 and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Process Technol 124:249–257CrossRef Sitthikhankaew R, Chadwick D, Assabumrungrat S, Laosiripojana N (2014) Effects of humidity, O2 and CO2 on H2S adsorption onto upgraded and KOH impregnated activated carbons. Fuel Process Technol 124:249–257CrossRef
44.
Zurück zum Zitat Castrillon MC, Moura KO, Alves CA, Bastos-Neto M, Azevedo DCS, Hofmann J, Möllmer J, Einicke WD, Gläser R (2016) CO2 and H2S removal from CH4-rich streams by adsorption on activated carbons modified with K2CO3, NaOH, or Fe2O3. Energy Fuels 30:9596–9604CrossRef Castrillon MC, Moura KO, Alves CA, Bastos-Neto M, Azevedo DCS, Hofmann J, Möllmer J, Einicke WD, Gläser R (2016) CO2 and H2S removal from CH4-rich streams by adsorption on activated carbons modified with K2CO3, NaOH, or Fe2O3. Energy Fuels 30:9596–9604CrossRef
45.
Zurück zum Zitat Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRef Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRef
46.
Zurück zum Zitat He R, Xia FF, Wang J, Pan CL, Fang CR (2011) Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. J Hazard Mater 186:773–778CrossRef He R, Xia FF, Wang J, Pan CL, Fang CR (2011) Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. J Hazard Mater 186:773–778CrossRef
47.
Zurück zum Zitat Fernández-Delgado Juárez M, Mostbauer P, Knapp A, Müller W, Tertsch S, Bockreis A, Insam H (2018) Biogas purification with biomass ash. Waste Manag 71:224–232CrossRef Fernández-Delgado Juárez M, Mostbauer P, Knapp A, Müller W, Tertsch S, Bockreis A, Insam H (2018) Biogas purification with biomass ash. Waste Manag 71:224–232CrossRef
48.
Zurück zum Zitat Bagreev A, Bandosz TJ (2001) H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification. Carbon 39:2303–2311CrossRef Bagreev A, Bandosz TJ (2001) H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification. Carbon 39:2303–2311CrossRef
49.
Zurück zum Zitat Bandosz TJ (2006) Carbonaceous materials as desulfurization media. In: Loureiro JM, Kartel MT (Eds.), Combined and hybrid adsorbents: fundamentals and applications, pp 145–164 Bandosz TJ (2006) Carbonaceous materials as desulfurization media. In: Loureiro JM, Kartel MT (Eds.), Combined and hybrid adsorbents: fundamentals and applications, pp 145–164
50.
Zurück zum Zitat Jakab E, Faix O, Till F (1997) Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol 40–41:171–186CrossRef Jakab E, Faix O, Till F (1997) Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol 40–41:171–186CrossRef
51.
Zurück zum Zitat Sharma R, Wooten J, Baliga V, Lin X, Chan W (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482CrossRef Sharma R, Wooten J, Baliga V, Lin X, Chan W (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482CrossRef
52.
Zurück zum Zitat Han X, Chen H, Liu Y, Pan J (2020) Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. J Nat Gas Sci Eng 73:103068CrossRef Han X, Chen H, Liu Y, Pan J (2020) Study on removal of gaseous hydrogen sulfide based on macroalgae biochars. J Nat Gas Sci Eng 73:103068CrossRef
53.
Zurück zum Zitat Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Biores Technol 102:716–723CrossRef Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Biores Technol 102:716–723CrossRef
54.
Zurück zum Zitat Vasanth KK (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137:1538–1544CrossRef Vasanth KK (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137:1538–1544CrossRef
55.
Zurück zum Zitat Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147:87–96CrossRef Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147:87–96CrossRef
Metadaten
Titel
Hydrogen sulfide removal from biogas using biomass-derived naturally alkaline biochars: performance analysis and kinetics
verfasst von
Deep Bora
Kuldeep Roy
Pinakeswar Mahanta
Lepakshi Barbora
Publikationsdatum
15.03.2024
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 3/2024
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-024-01908-8

Weitere Artikel der Ausgabe 3/2024

Journal of Material Cycles and Waste Management 3/2024 Zur Ausgabe