Skip to main content

2017 | OriginalPaper | Buchkapitel

Hydrokinetic Tidal Energy Resource Assessments Using Numerical Models

verfasst von : Kevin Haas, Zafer Defne, Xiufeng Yang, Brittany Bruder

Erschienen in: Marine Renewable Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyrdokinetic tidal energy is the conversion of tidal current kinetic energy to another more useful form, frequently electricity. As with any other form of renewable energy, resource assessments are essential for the tidal energy project planning and design process. While tidal currents have significant spatial and temporal variability, the predictability of tidal flows makes deterministic modeling a suitable methodology for hydrokinetic tidal energy resource assessments. The scope (theoretical, technical, or practical resource) and scale (turbine, region, or project) of the assessment determine the basic concepts and methodology to be utilized and are described in this chapter. At the turbine scale, the technical resource is frequently quantified as the annual energy production (AEP) computed based on the velocity probability distribution for the specific location as well as the turbine properties. The uncertainty associated with the estimates of the AEP is highly dependent on the accuracy of the tidal constituent amplitudes and phases. Regional resource assessments are frequently used to determine the feasibility of tidal power at the scale of an estuary, using numerical models to predict the spatial distribution of the power density. In addition, simplified models or even analytical analysis can be done to produce an upper bound on the regional theoretical power, although with a high level of uncertainty due to the simplifications and assumptions. Resource assessments at the project scale provide both the theoretical and the technical energy as well as the practical energy accounting for many additional constraints, including social, economic, and environmental restrictions. The International Electrotechnical Commission technical specification for tidal energy resource assessments (IEC 2015) provides the essential guidelines for performing project-scale resource assessments. These guidelines include minimum grid resolution requirements as well as model calibration and validation procedures. In addition, larger projects will need to include the effect of energy extraction on the flow field to produce more accurate estimates of velocity probability distributions for computing the technical resource. An example case study demonstrating a regional feasibility and project-scale resource assessment is presented in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adcock, T. A., & Draper, S. (2014). Power extraction from tidal channels–multiple tidal constituents, compound tides and overtides. Renewable Energy, 63, 797–806.CrossRef Adcock, T. A., & Draper, S. (2014). Power extraction from tidal channels–multiple tidal constituents, compound tides and overtides. Renewable Energy, 63, 797–806.CrossRef
Zurück zum Zitat Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2014). Tidal stream power in the Pentland Firth–long-term variability, multiple constituents and capacity factor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. Adcock, T. A., Draper, S., Houlsby, G. T., Borthwick, A. G., & Serhadlıoğlu, S. (2014). Tidal stream power in the Pentland Firth–long-term variability, multiple constituents and capacity factor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.
Zurück zum Zitat Adcock, T. A., Draper, S., & Nishino, T. (2015). Tidal power generation—A review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. Adcock, T. A., Draper, S., & Nishino, T. (2015). Tidal power generation—A review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.
Zurück zum Zitat Arbic, B. K., & Garrett, C. (2010). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30(6), 564–574.CrossRef Arbic, B. K., & Garrett, C. (2010). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30(6), 564–574.CrossRef
Zurück zum Zitat Ben Elghali, S. E., Benbouzid, M. E. H., & Charpentier, J. F. (2007). Marine tidal current electric power generation technology: State of the art and current status. In IEEE International Electric Machines & Drives Conference, 2007 IEMDC’07 (Vol. 2, pp. 1407–1412). IEEE. Ben Elghali, S. E., Benbouzid, M. E. H., & Charpentier, J. F. (2007). Marine tidal current electric power generation technology: State of the art and current status. In IEEE International Electric Machines & Drives Conference, 2007 IEMDC’07 (Vol. 2, pp. 1407–1412). IEEE.
Zurück zum Zitat Betz, A. (1920). Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26(8), 307–309. Betz, A. (1920). Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26(8), 307–309.
Zurück zum Zitat Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(3), 289–297. Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(3), 289–297.
Zurück zum Zitat Blunden, L. S., & Bahaj, A. S. (2006). Initial evaluation of tidal stream energy resources at Portland Bill. UK. Renewable Energy, 31(2), 121–132.CrossRef Blunden, L. S., & Bahaj, A. S. (2006). Initial evaluation of tidal stream energy resources at Portland Bill. UK. Renewable Energy, 31(2), 121–132.CrossRef
Zurück zum Zitat Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal stream generators. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 137–146. Blunden, L. S., & Bahaj, A. S. (2007). Tidal energy resource assessment for tidal stream generators. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 137–146.
Zurück zum Zitat Bomminayuni, S., Bruder, B., Stoesser, T., & Haas, K. (2012). Assessment of hydrokinetic energy near Rose Dhu Island, Georgia. Journal of Renewable and Sustainable Energy, 4(6), 063107.CrossRef Bomminayuni, S., Bruder, B., Stoesser, T., & Haas, K. (2012). Assessment of hydrokinetic energy near Rose Dhu Island, Georgia. Journal of Renewable and Sustainable Energy, 4(6), 063107.CrossRef
Zurück zum Zitat Brooks, D. A. (2011). The hydrokinetic power resource in a tidal estuary: The Kennebec river of the central maine coast. Renewable Energy, 36(5), 1492–1501.CrossRef Brooks, D. A. (2011). The hydrokinetic power resource in a tidal estuary: The Kennebec river of the central maine coast. Renewable Energy, 36(5), 1492–1501.CrossRef
Zurück zum Zitat Bruder, B., Bomminayuni, S., Haas, K., & Stoesser, T. (2014). Modeling tidal distortion in the Ogeechee Estuary. Ocean Modelling, 82, 60–69.CrossRef Bruder, B., Bomminayuni, S., Haas, K., & Stoesser, T. (2014). Modeling tidal distortion in the Ogeechee Estuary. Ocean Modelling, 82, 60–69.CrossRef
Zurück zum Zitat Bruder, B. & Haas, K. (2014). Tidal Distortion as Pertains to Hydrokinetic Turbine Selection and Resource Assessment. Marine Energy Technology Symposium, April 2014, Seattle, WA. Bruder, B. & Haas, K. (2014). Tidal Distortion as Pertains to Hydrokinetic Turbine Selection and Resource Assessment. Marine Energy Technology Symposium, April 2014, Seattle, WA.
Zurück zum Zitat Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.CrossRef Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524.CrossRef
Zurück zum Zitat Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338.CrossRef Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16(5), 3326–3338.CrossRef
Zurück zum Zitat Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast. USA. Renewable Energy, 36(12), 3461–3471.CrossRef Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast. USA. Renewable Energy, 36(12), 3461–3471.CrossRef
Zurück zum Zitat Funke, S. W., Farrell, P. E., & Piggott, M. D. (2014). Tidal turbine array optimisation using the adjoint approach. Renewable Energy, 63, 658–673.CrossRef Funke, S. W., Farrell, P. E., & Piggott, M. D. (2014). Tidal turbine array optimisation using the adjoint approach. Renewable Energy, 63, 658–673.CrossRef
Zurück zum Zitat Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 461(2060), 2563–2572. Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 461(2060), 2563–2572.
Zurück zum Zitat Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefMATH Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefMATH
Zurück zum Zitat Gorban, A. N., Gorlov, A. M., & Silantyev, V. M. (2001). Limits of the turbine efficiency for free fluid flow. Journal of Energy Resources Technology, 123(4), 311–317.CrossRef Gorban, A. N., Gorlov, A. M., & Silantyev, V. M. (2001). Limits of the turbine efficiency for free fluid flow. Journal of Energy Resources Technology, 123(4), 311–317.CrossRef
Zurück zum Zitat Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.CrossRef Gunawan, B., Neary, V. S., & Colby, J. (2014). Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York. Renewable Energy, 71, 509–517.CrossRef
Zurück zum Zitat Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The Impact of Tidal Stream Turbines on Circulation and Sediment Transport in Muskeget Channel, MA. Marine Technology Society Journal, 47(4), 122–136.CrossRef Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The Impact of Tidal Stream Turbines on Circulation and Sediment Transport in Muskeget Channel, MA. Marine Technology Society Journal, 47(4), 122–136.CrossRef
Zurück zum Zitat Harrison, M. E., Batten, W. M. J., Myers, L. E., & Bahaj, A. S. (2010). Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, 4(6), 613–627.CrossRef Harrison, M. E., Batten, W. M. J., Myers, L. E., & Bahaj, A. S. (2010). Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, 4(6), 613–627.CrossRef
Zurück zum Zitat Hasegawa, D., Sheng, J., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61(11), 1845–1868.CrossRef Hasegawa, D., Sheng, J., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61(11), 1845–1868.CrossRef
Zurück zum Zitat IEC (2013). TS 62600–1:2013 Marine energy—Wave, tidal and other water current converters—Part 1: Terminology. IEC (2013). TS 62600–1:2013 Marine energy—Wave, tidal and other water current converters—Part 1: Terminology.
Zurück zum Zitat IEC (2014). TS 62600-200:2014 Marine energy—Wave, tidal and other water current converters—Part 200: Power performance assessment of electricity producing tidal energy converters. IEC (2014). TS 62600-200:2014 Marine energy—Wave, tidal and other water current converters—Part 200: Power performance assessment of electricity producing tidal energy converters.
Zurück zum Zitat IEC (2015). TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters - Part 201: Tidal energy resource assessment and characterization. IEC (2015). TS 62600-201:2015 Marine energy—Wave, tidal and other water current converters - Part 201: Tidal energy resource assessment and characterization.
Zurück zum Zitat Iglesias, G., Sánchez, M., Carballo, R., & Fernández, H. (2012). The TSE index–a new tool for selecting tidal stream sites in depth-limited regions. Renewable Energy, 48, 350–357.CrossRef Iglesias, G., Sánchez, M., Carballo, R., & Fernández, H. (2012). The TSE index–a new tool for selecting tidal stream sites in depth-limited regions. Renewable Energy, 48, 350–357.CrossRef
Zurück zum Zitat Jo, C., Yim, J., Lee, K., & Rho, Y. (2012). Performance of horizontal axis tidal current turbine by blade configuration. Renewable Energy, 42, 195–206.CrossRef Jo, C., Yim, J., Lee, K., & Rho, Y. (2012). Performance of horizontal axis tidal current turbine by blade configuration. Renewable Energy, 42, 195–206.CrossRef
Zurück zum Zitat Joukowsky, N. E. (1920). Windmill of the NEJ type. Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1, 57. Joukowsky, N. E. (1920). Windmill of the NEJ type. Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1, 57.
Zurück zum Zitat Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507. Karsten, R. H., McMillan, J. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(5), 493–507.
Zurück zum Zitat Lanchester, F. W. (1915). A contribution to the theory of propulsion and the screw propeller. Journal of the American Society for Naval Engineers, 27(2), 509–510.CrossRef Lanchester, F. W. (1915). A contribution to the theory of propulsion and the screw propeller. Journal of the American Society for Naval Engineers, 27(2), 509–510.CrossRef
Zurück zum Zitat Lawn, C. J. (2003). Optimization of the power output from ducted turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 107–117. Lawn, C. J. (2003). Optimization of the power output from ducted turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 107–117.
Zurück zum Zitat Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.CrossRef Lewis, M., Neill, S. P., Robins, P. E., & Hashemi, M. R. (2015). Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415.CrossRef
Zurück zum Zitat Naksrisuk, C., & Audomvongseree, K. (2013). Dependable capacity evaluation of wind power and solar power generation systems. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–6). IEEE. Naksrisuk, C., & Audomvongseree, K. (2013). Dependable capacity evaluation of wind power and solar power generation systems. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–6). IEEE.
Zurück zum Zitat National Research Council (NRC). (2013). An Evaluation of the U.S. Department of Energy’s Marine and Hydrokinetic Resource Assessments. The National Academies Press. National Research Council (NRC). (2013). An Evaluation of the U.S. Department of Energy’s Marine and Hydrokinetic Resource Assessments. The National Academies Press.
Zurück zum Zitat Neary, V. S., Gunawan, B., & Sale, D. C. (2013). Turbulent inflow characteristics for hydrokinetic energy conversion in rivers. Renewable and Sustainable Energy Reviews, 26, 437–445.CrossRef Neary, V. S., Gunawan, B., & Sale, D. C. (2013). Turbulent inflow characteristics for hydrokinetic energy conversion in rivers. Renewable and Sustainable Energy Reviews, 26, 437–445.CrossRef
Zurück zum Zitat Pacheco, A., & Ferreira, Ó. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRef Pacheco, A., & Ferreira, Ó. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRef
Zurück zum Zitat Polagye, B. & Bedard, R. (2006). Tidal in-stream energy resource assessment for Southeast Alaska. Electric Power Research Institute. Polagye, B. & Bedard, R. (2006). Tidal in-stream energy resource assessment for Southeast Alaska. Electric Power Research Institute.
Zurück zum Zitat Polagye, B. L., Epler, J., & Thomson, J. (2010). Limits to the predictability of tidal current energy. OCEANS 2010 (pp. 1–9). IEEE. Polagye, B. L., Epler, J., & Thomson, J. (2010). Limits to the predictability of tidal current energy. OCEANS 2010 (pp. 1–9). IEEE.
Zurück zum Zitat Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(5), 571–587. Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223(5), 571–587.
Zurück zum Zitat Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.CrossRef Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36(1), 222–234.CrossRef
Zurück zum Zitat Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: methodology and field study in Admiralty Inlet, Puget Sound, WA (USA). Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0957650912470081. Polagye, B., & Thomson, J. (2013). Tidal energy resource characterization: methodology and field study in Admiralty Inlet, Puget Sound, WA (USA). Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0957650912470081.
Zurück zum Zitat Rao, S., Xue, H., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory. Ocean Dynamics, 66(1), 41–57.CrossRef Rao, S., Xue, H., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the Western Passage using the disc actuator theory. Ocean Dynamics, 66(1), 41–57.CrossRef
Zurück zum Zitat Ramos, V., Carballo, R., Álvarez, M., Sánchez, M., & Iglesias, G. (2014). A port towards energy self-sufficiency using tidal stream power. Energy, 71, 432–444.CrossRef Ramos, V., Carballo, R., Álvarez, M., Sánchez, M., & Iglesias, G. (2014). A port towards energy self-sufficiency using tidal stream power. Energy, 71, 432–444.CrossRef
Zurück zum Zitat Roc, T., Conley, D. C., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448–464.CrossRef Roc, T., Conley, D. C., & Greaves, D. (2013). Methodology for tidal turbine representation in ocean circulation model. Renewable Energy, 51, 448–464.CrossRef
Zurück zum Zitat Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7(1), 165.CrossRef Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7(1), 165.CrossRef
Zurück zum Zitat Shi, W., Wang, D., Atlar, M., & Seo, K. C. (2013). Flow separation impacts on the hydrodynamic performance analysis of a marine current turbine using CFD. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(8), 833–846. Shi, W., Wang, D., Atlar, M., & Seo, K. C. (2013). Flow separation impacts on the hydrodynamic performance analysis of a marine current turbine using CFD. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(8), 833–846.
Zurück zum Zitat Stock-Williams, C., Parkinson, S., & Gunn, K. (2013). An investigation of uncertainty in yield prediction for tidal current farms. 10th European wave and tidal energy conference (EWTEC). Stock-Williams, C., Parkinson, S., & Gunn, K. (2013). An investigation of uncertainty in yield prediction for tidal current farms. 10th European wave and tidal energy conference (EWTEC).
Zurück zum Zitat Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 147–157. Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2), 147–157.
Zurück zum Zitat Tang, H. S., Kraatz, S., Qu, K., Chen, G. Q., Aboobaker, N., & Jiang, C. B. (2014). High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews, 32, 960–982.CrossRef Tang, H. S., Kraatz, S., Qu, K., Chen, G. Q., Aboobaker, N., & Jiang, C. B. (2014). High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews, 32, 960–982.CrossRef
Zurück zum Zitat Vennell, R. (2011). Tuning tidal turbines in-concert to maximise farm efficiency. Journal of Fluid Mechanics, 671, 587–604.MathSciNetCrossRefMATH Vennell, R. (2011). Tuning tidal turbines in-concert to maximise farm efficiency. Journal of Fluid Mechanics, 671, 587–604.MathSciNetCrossRefMATH
Zurück zum Zitat Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRef Vennell, R. (2012). Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renewable Energy, 47, 95–102.CrossRef
Zurück zum Zitat Vennell, R., Funke, S. W., Draper, S., Stevens, C., & Divett, T. (2015). Designing large arrays of tidal turbines: A synthesis and review. Renewable and Sustainable Energy Reviews, 41, 454–472.CrossRef Vennell, R., Funke, S. W., Draper, S., Stevens, C., & Divett, T. (2015). Designing large arrays of tidal turbines: A synthesis and review. Renewable and Sustainable Energy Reviews, 41, 454–472.CrossRef
Zurück zum Zitat Walters, R. A., Tarbotton, M. R., & Hiles, C. E. (2013). Estimation of tidal power potential. Renewable Energy, 51, 255–262.CrossRef Walters, R. A., Tarbotton, M. R., & Hiles, C. E. (2013). Estimation of tidal power potential. Renewable Energy, 51, 255–262.CrossRef
Zurück zum Zitat Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRef Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRef
Zurück zum Zitat Yang, X., & Haas, K. A. (2015). Improving assessments of tidal power potential using grid refinement in the coupled ocean-atmosphere-wave-sediment transport model. Journal of Renewable and Sustainable Energy, 7(4), 043107.CrossRef Yang, X., & Haas, K. A. (2015). Improving assessments of tidal power potential using grid refinement in the coupled ocean-atmosphere-wave-sediment transport model. Journal of Renewable and Sustainable Energy, 7(4), 043107.CrossRef
Zurück zum Zitat Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1), 187–202.CrossRef Yang, Z., & Wang, T. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38(1), 187–202.CrossRef
Zurück zum Zitat Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRef Yang, Z., Wang, T., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRef
Zurück zum Zitat Yang, Z., Wang, T., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRef Yang, Z., Wang, T., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRef
Zurück zum Zitat Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72–82.CrossRef Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72–82.CrossRef
Metadaten
Titel
Hydrokinetic Tidal Energy Resource Assessments Using Numerical Models
verfasst von
Kevin Haas
Zafer Defne
Xiufeng Yang
Brittany Bruder
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_4