Skip to main content

2017 | OriginalPaper | Buchkapitel

Analyses of Wave Scattering and Absorption Produced by WEC Arrays: Physical/Numerical Experiments and Model Assessment

verfasst von : H. Tuba Özkan-Haller, Merrick C. Haller, J. Cameron McNatt, Aaron Porter, Pukha Lenee-Bluhm

Erschienen in: Marine Renewable Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge of the effects of wave energy converters (WECs) on the near and far wave fields is critical to the efficient and low-risk design of waveforms. Several computational wave models enable the evaluation of WEC array effects, but model validation has been limited. In this chapter, we validate two popular models with very different formulations: the phase-resolving model WAMIT and the phase-averaged Simulating WAves Nearshore (SWAN) model. The models are validated against wave data from an extensive set of WEC array laboratory experiments conducted by Oregon State University and Columbia Power Technologies, Inc (CPT). The experimental WECs were 1:33 scale versions of a commercial device (CPT “Manta”), and several different WEC array configurations were subjected to a range of regular waves and random sea states. The wave field in the lee of the WEC arrays was mapped, and the wave shadow was quantified for all sea states. In addition, the WEC power capture performance was measured independently via a motion-tracking system and compared to the observed wave energy deficit (i.e., the wave shadow). Overall, WAMIT displays skill in predicting the wave field both in offshore and in the lee of the WEC arrays. WAMIT simulations demonstrate partial standing wave patterns that are consistent with the observations. These patterns are related to wave scattering processes, and their presence increases the magnitude of the wave shadow in the lee of WECs. The pattern is less pronounced at longer wave periods where WECs behave more like wave followers. In these situations, the wave shadow is primarily controlled by the WEC energy capture and less so by scattering. The SWAN model accounts for the frequency-dependent energy capture of the devices and performs well for cases when the wave shadow is primarily controlled by the WEC energy capture. For regular wave cases, inclusion of the wave diffraction process is necessary, but SWAN simulations for wave fields with frequency and directional spreading capture the general character of the wave shadow even without diffraction. Finally, we suggest that WECs designed to operate such that the expected significant wave energy lies at periods near, or larger than, the period of peak energy extraction will minimize the wave shadow effect for a given gross extraction of wave energy, which leads to more efficient arrays with respect to environmental impact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abanades, J., Greaves, D., & Iglesias, G. (2014a). Wave farm impact on the beach profile: A case study. Coastal Engineering, 86, 36–44.CrossRef Abanades, J., Greaves, D., & Iglesias, G. (2014a). Wave farm impact on the beach profile: A case study. Coastal Engineering, 86, 36–44.CrossRef
Zurück zum Zitat Abanades, J., Greaves, D., & Iglesias, G. (2014b). Coastal defence through wave farms. Coastal Engineering, 91, 299–307.CrossRef Abanades, J., Greaves, D., & Iglesias, G. (2014b). Coastal defence through wave farms. Coastal Engineering, 91, 299–307.CrossRef
Zurück zum Zitat Alexandre, A., Stallard, T., & Stansby, P. K. (2009). Transformation of wave spectra across a line of wave devices. Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC 2009). Alexandre, A., Stallard, T., & Stansby, P. K. (2009). Transformation of wave spectra across a line of wave devices. Proceedings of the 8th European Wave and Tidal Energy Conference (EWTEC 2009).
Zurück zum Zitat Ashton, I. G. C., Johanning, L., & Linfoot, B. (2009). Measurement of the effect of power absorption in the lee of a wave energy converter. Proceedings of OMAE 2009, OMAE2009–79793. Ashton, I. G. C., Johanning, L., & Linfoot, B. (2009). Measurement of the effect of power absorption in the lee of a wave energy converter. Proceedings of OMAE 2009, OMAE2009–79793.
Zurück zum Zitat Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T., & Krokstad, J. (2012). Numerical benchmarking study of a selection of wave energy converters. Renewable Energy, 41, 44–63.CrossRef Babarit, A., Hals, J., Muliawan, M. J., Kurniawan, A., Moan, T., & Krokstad, J. (2012). Numerical benchmarking study of a selection of wave energy converters. Renewable Energy, 41, 44–63.CrossRef
Zurück zum Zitat Babarit, A. (2013). On the park effect in arrays of oscillating wave energy converters. Renewable Energy, 58, 68–78.CrossRef Babarit, A. (2013). On the park effect in arrays of oscillating wave energy converters. Renewable Energy, 58, 68–78.CrossRef
Zurück zum Zitat Beels, C., Troch, P., De Visch, K., Kofoed, J. P., & De Backer, G. (2010). Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of wave dragon wave energy converters. Renewable Energy, 35, 1644–1661.CrossRef Beels, C., Troch, P., De Visch, K., Kofoed, J. P., & De Backer, G. (2010). Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of wave dragon wave energy converters. Renewable Energy, 35, 1644–1661.CrossRef
Zurück zum Zitat Black, C., & Haller, M. C. (2013). Analysis of waves in the near-field of wave energy converter arrays through stereo video, Abstract: OS11C-1657. San Francisco, CA: AGU Fall Meeting. Black, C., & Haller, M. C. (2013). Analysis of waves in the near-field of wave energy converter arrays through stereo video, Abstract: OS11C-1657. San Francisco, CA: AGU Fall Meeting.
Zurück zum Zitat Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions—1. Model description and validation. Journal Geophysical Research, 104(C4), 7649–7666.CrossRef Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions—1. Model description and validation. Journal Geophysical Research, 104(C4), 7649–7666.CrossRef
Zurück zum Zitat Borgarino, B., Babarit, A., & Ferrant, P. (2012). Impact of wave interactions effects on energy absorption in large arrays of wave energy converters. Ocean Engineering, 41, 79–88.CrossRefMATH Borgarino, B., Babarit, A., & Ferrant, P. (2012). Impact of wave interactions effects on energy absorption in large arrays of wave energy converters. Ocean Engineering, 41, 79–88.CrossRefMATH
Zurück zum Zitat Chang, G., Ruehl, K., Jones, C. A., Roberts, J., & Chartrand, C. (2016). Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions. Renewable Energy, 89, 636–648.CrossRef Chang, G., Ruehl, K., Jones, C. A., Roberts, J., & Chartrand, C. (2016). Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions. Renewable Energy, 89, 636–648.CrossRef
Zurück zum Zitat Chatjigeorgiou, I. K. (2011). Three dimensional wave scattering by arrays of elliptical and circular cylinders. Ocean Engineering, 38, 1480–1494.CrossRef Chatjigeorgiou, I. K. (2011). Three dimensional wave scattering by arrays of elliptical and circular cylinders. Ocean Engineering, 38, 1480–1494.CrossRef
Zurück zum Zitat Choi, J, Lim, C. H., Lee, J. I. & Yoon S. B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, Vol. 56, 297–312. Choi, J, Lim, C. H., Lee, J. I. & Yoon S. B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, Vol. 56, 297–312.
Zurück zum Zitat Day, A. H., Babarit, A., Fontaine, A., He, Y.-P., Kraskowski, M., Mirai, M., et al. (2015). Ocean Engineering, 108, 46–69.CrossRef Day, A. H., Babarit, A., Fontaine, A., He, Y.-P., Kraskowski, M., Mirai, M., et al. (2015). Ocean Engineering, 108, 46–69.CrossRef
Zurück zum Zitat De Andrés, A. D., Guanche, R., Meneses, L., Vidal, C., & Losada, I. J. (2014). Factors that influence array layout on wave energy farms. Ocean Engineering, 82, 32–41.CrossRef De Andrés, A. D., Guanche, R., Meneses, L., Vidal, C., & Losada, I. J. (2014). Factors that influence array layout on wave energy farms. Ocean Engineering, 82, 32–41.CrossRef
Zurück zum Zitat Eriksson, M., Waters, R., Svensson, O., Isberg, J., & Leijon, M. (2007). Wave power absorption: Experiments in open sea and simulation. Journal of Applied Physics, 102, 084910.CrossRef Eriksson, M., Waters, R., Svensson, O., Isberg, J., & Leijon, M. (2007). Wave power absorption: Experiments in open sea and simulation. Journal of Applied Physics, 102, 084910.CrossRef
Zurück zum Zitat de Falcão, A. F. (2010). O., Wave energy utilization: A review of technologies. Renewable and Sustainable Energy Reviews, 14, 899–918.CrossRef de Falcão, A. F. (2010). O., Wave energy utilization: A review of technologies. Renewable and Sustainable Energy Reviews, 14, 899–918.CrossRef
Zurück zum Zitat Farley, F. J. M., (2011). Far-field theory of wave power capture by oscillating systems. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 370(1959), 278–287. Farley, F. J. M., (2011). Far-field theory of wave power capture by oscillating systems. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 370(1959), 278–287.
Zurück zum Zitat Fernandez, H., Iglesias, G., Carballo, R., Castro, A., Fraguela, J. A., Taveira-Pinto, F., et al. (2012). The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 29, 58–70.CrossRef Fernandez, H., Iglesias, G., Carballo, R., Castro, A., Fraguela, J. A., Taveira-Pinto, F., et al. (2012). The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 29, 58–70.CrossRef
Zurück zum Zitat Flocard, F., & Finnigan, T. D. (2010). Laboratory experiments on the power capture of pitching vertical cylinders in waves. Ocean Engineering, 37, 989–997.CrossRef Flocard, F., & Finnigan, T. D. (2010). Laboratory experiments on the power capture of pitching vertical cylinders in waves. Ocean Engineering, 37, 989–997.CrossRef
Zurück zum Zitat Folley, M., & Whittaker, T. (2013). Validating a spectral-domain model of an OWC using physical model data. International Journal of Marine Energy, 2, 1–11.CrossRef Folley, M., & Whittaker, T. (2013). Validating a spectral-domain model of an OWC using physical model data. International Journal of Marine Energy, 2, 1–11.CrossRef
Zurück zum Zitat Gonzalez-Santamaria, R., Zou, Q. P., & Pan, S. (2013). Impacts of a wave farm on waves, currents and coastal morphology in Southest England. Estuaries and Coasts, 1, 1–14. Gonzalez-Santamaria, R., Zou, Q. P., & Pan, S. (2013). Impacts of a wave farm on waves, currents and coastal morphology in Southest England. Estuaries and Coasts, 1, 1–14.
Zurück zum Zitat Haller, M. C., Porter, A., Lenee-Bluhm, P., Rhinefrank, K., Hammagren, E., Özkan-Haller, T. & Newborn, D. (2011). Laboratory observations of waves in the vicinity of WEC-arrays. Proceedings of European Wave and Tidal Energy Conference (EWTEC 2011), Paper No. 419. Haller, M. C., Porter, A., Lenee-Bluhm, P., Rhinefrank, K., Hammagren, E., Özkan-Haller, T. & Newborn, D. (2011). Laboratory observations of waves in the vicinity of WEC-arrays. Proceedings of European Wave and Tidal Energy Conference (EWTEC 2011), Paper No. 419.
Zurück zum Zitat Holthuijsen, L., Herman, A. & Booij, N. (2003). Phase-decoupled refraction–diffraction for spectral wave models. Coastal Engineering, 49(4), 291–305. Holthuijsen, L., Herman, A. & Booij, N. (2003). Phase-decoupled refraction–diffraction for spectral wave models. Coastal Engineering, 49(4), 291–305.
Zurück zum Zitat Ilic, S., van der Westhuysen, A. J., Roelvink, J. A., & Chadwick, A. J. (2007). Multidirectional wave transformation around detached breakwaters. Coastal Engineering, 54, 775–789.CrossRef Ilic, S., van der Westhuysen, A. J., Roelvink, J. A., & Chadwick, A. J. (2007). Multidirectional wave transformation around detached breakwaters. Coastal Engineering, 54, 775–789.CrossRef
Zurück zum Zitat Iturrioz, A., Guanche, R., Armesto, J. A., Alves, M. A., Vidal, C., & Losada, I. J. (2014). Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean Engineering, 76, 65–74.CrossRef Iturrioz, A., Guanche, R., Armesto, J. A., Alves, M. A., Vidal, C., & Losada, I. J. (2014). Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean Engineering, 76, 65–74.CrossRef
Zurück zum Zitat Kara, F. (2016). Time domain prediction of power absorption from ocean waves with wave energy converter arrays. Renewable Energy, 92, 30–46.CrossRef Kara, F. (2016). Time domain prediction of power absorption from ocean waves with wave energy converter arrays. Renewable Energy, 92, 30–46.CrossRef
Zurück zum Zitat Li, Y., & Yu, Y.-H. (2012). A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renewable and Sustainable Energy Reviews, 16, 4352–4364.CrossRef Li, Y., & Yu, Y.-H. (2012). A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renewable and Sustainable Energy Reviews, 16, 4352–4364.CrossRef
Zurück zum Zitat McNatt, J. C., Venugopal, V., & Forehand, D. (2013). The cylindrical wave field of wave energy converters. International Journal of Marine Energy, 3–4, e26–e39.CrossRef McNatt, J. C., Venugopal, V., & Forehand, D. (2013). The cylindrical wave field of wave energy converters. International Journal of Marine Energy, 3–4, e26–e39.CrossRef
Zurück zum Zitat Mei, C. C. (2012). Hydrodynamic principles of wave power extraction. Philosophical Transactions of the Royal Society A, 370, 208–234.MathSciNetCrossRefMATH Mei, C. C. (2012). Hydrodynamic principles of wave power extraction. Philosophical Transactions of the Royal Society A, 370, 208–234.MathSciNetCrossRefMATH
Zurück zum Zitat Mendoza, E., Silva, R., Zanuttigh, B., Angelelli, E., Andersen, T. L., Martinelli, L., et al. (2014). Beach response to wave energy converter farms acting as coastal defence. Coastal Engineering, 87, 97–111.CrossRef Mendoza, E., Silva, R., Zanuttigh, B., Angelelli, E., Andersen, T. L., Martinelli, L., et al. (2014). Beach response to wave energy converter farms acting as coastal defence. Coastal Engineering, 87, 97–111.CrossRef
Zurück zum Zitat Millar, D. L., Smith, H. C. M., & Reeve, D. E. (2007). Modelling analysis of the sensitivity of shoreline change to a wave farm. Ocean Engineering, 34(5–6), 884–901.CrossRef Millar, D. L., Smith, H. C. M., & Reeve, D. E. (2007). Modelling analysis of the sensitivity of shoreline change to a wave farm. Ocean Engineering, 34(5–6), 884–901.CrossRef
Zurück zum Zitat Nihous, G. C. (2012). Wave power extraction by arbitrary arrays of non-diffracting oscillating water columns. Ocean Engineering, 51, 94–105.CrossRef Nihous, G. C. (2012). Wave power extraction by arbitrary arrays of non-diffracting oscillating water columns. Ocean Engineering, 51, 94–105.CrossRef
Zurück zum Zitat O’Dea, A., Haller, M. C. & Özkan-Haller, H. T. (2015). The impact of wave energy converter arrays on wave-induced forcing in the surf zone. Submitted to Renewable Energy. O’Dea, A., Haller, M. C. & Özkan-Haller, H. T. (2015). The impact of wave energy converter arrays on wave-induced forcing in the surf zone. Submitted to Renewable Energy.
Zurück zum Zitat Palha, A., Mendes, L., Fortes, C. J., Brito-Melo, A., & Sarmento, A. (2010). The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices. Renewable Energy, 35(1), 62–77.CrossRef Palha, A., Mendes, L., Fortes, C. J., Brito-Melo, A., & Sarmento, A. (2010). The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices. Renewable Energy, 35(1), 62–77.CrossRef
Zurück zum Zitat Payne, G. S., Taylor, J. R. M., Bruce, T., & Parkin, P. (2008). Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 2: Experimental validation. Ocean Engineering, 35, 342–357.CrossRef Payne, G. S., Taylor, J. R. M., Bruce, T., & Parkin, P. (2008). Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 2: Experimental validation. Ocean Engineering, 35, 342–357.CrossRef
Zurück zum Zitat Porter, A. K., Haller, M. C. & Lenee-Bluhm, P. (2012). Laboratory observations and numerical modeling of the effects of an array of wave energy converters. Proceedings of 33rd ICCE 2012. Santander, Spain, doi:10.9753/icce.v33.management.67. Porter, A. K., Haller, M. C. & Lenee-Bluhm, P. (2012). Laboratory observations and numerical modeling of the effects of an array of wave energy converters. Proceedings of 33rd ICCE 2012. Santander, Spain, doi:10.​9753/​icce.​v33.​management.​67.
Zurück zum Zitat Rusu, E., & Guedes, C. (2013). Soares, Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renewable Energy, 58, 34–49.CrossRef Rusu, E., & Guedes, C. (2013). Soares, Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renewable Energy, 58, 34–49.CrossRef
Zurück zum Zitat Silverthorne, K. E. & Folley, M. (2013). A new numerical representation of wave energy converters in a spectral wave model. Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC 2013). Silverthorne, K. E. & Folley, M. (2013). A new numerical representation of wave energy converters in a spectral wave model. Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC 2013).
Zurück zum Zitat Sinha, A., Karmakar, D., & GuedesSoares, C. (2016). Performance of optimally tuned arrays of heaving point absorbers. Renewable Energy, 92, 517–531.CrossRef Sinha, A., Karmakar, D., & GuedesSoares, C. (2016). Performance of optimally tuned arrays of heaving point absorbers. Renewable Energy, 92, 517–531.CrossRef
Zurück zum Zitat Smith, H. C. M., Pearce, C., & Millar, D. L. (2012). Further analysis of change in nearshore wave climate due to an offshore wave farm: an enhanced case study for the Wave Hub site. Renewable Energy, 40(1), 51–64.CrossRef Smith, H. C. M., Pearce, C., & Millar, D. L. (2012). Further analysis of change in nearshore wave climate due to an offshore wave farm: an enhanced case study for the Wave Hub site. Renewable Energy, 40(1), 51–64.CrossRef
Zurück zum Zitat Stratigaki, V., Troch, P., Stallard, T., Forehand, D., Folley, M., Kofoed, J. P., et al. (2015). Sea-state modification and heaving float interaction factors from physical modelling of arrays of wave energy converters. Journal of Renewable and Sustainable Energy, 7, 061705.CrossRef Stratigaki, V., Troch, P., Stallard, T., Forehand, D., Folley, M., Kofoed, J. P., et al. (2015). Sea-state modification and heaving float interaction factors from physical modelling of arrays of wave energy converters. Journal of Renewable and Sustainable Energy, 7, 061705.CrossRef
Zurück zum Zitat Tutar, M., & Veci, I. (2016). Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF). Renewable Energy, 86, 8–25.CrossRef Tutar, M., & Veci, I. (2016). Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF). Renewable Energy, 86, 8–25.CrossRef
Zurück zum Zitat Waters, R., et al. (2007). Experimental results from sea trials of an offshore wave energy system. Applied Physics Letters, 90, 034105. Waters, R., et al. (2007). Experimental results from sea trials of an offshore wave energy system. Applied Physics Letters, 90, 034105.
Zurück zum Zitat Waters, R., et al. (2011). Ocean wave energy absorption in response to wave period and amplitude—Offshore experiments on a wave energy converter. IET Renewable Power Generation, 5(6), 465–469. Waters, R., et al. (2011). Ocean wave energy absorption in response to wave period and amplitude—Offshore experiments on a wave energy converter. IET Renewable Power Generation, 5(6), 465–469.
Zurück zum Zitat Weller, S. D., Stallard, T. J. & Stansby, P. K. (2010). Experimental measurements of irregular wave interaction factors in closely spaced arrays. IET Renewable Power Generation, 4(6), 628–637. Weller, S. D., Stallard, T. J. & Stansby, P. K. (2010). Experimental measurements of irregular wave interaction factors in closely spaced arrays. IET Renewable Power Generation, 4(6), 628–637.
Zurück zum Zitat Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57(3), 267–277. Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57(3), 267–277.
Metadaten
Titel
Analyses of Wave Scattering and Absorption Produced by WEC Arrays: Physical/Numerical Experiments and Model Assessment
verfasst von
H. Tuba Özkan-Haller
Merrick C. Haller
J. Cameron McNatt
Aaron Porter
Pukha Lenee-Bluhm
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_3