Skip to main content

2017 | OriginalPaper | Buchkapitel

Wave Energy Resources Along the European Atlantic Coast

verfasst von : Philippe Gleizon, Francisco Campuzano, Pablo Carracedo, André Martinez, Jamie Goggins, Reduan Atan, Stephen Nash

Erschienen in: Marine Renewable Energy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ocean wave energy has become the focus of governments and energy companies over the past decade. In spite of its unpredictability, this untapped source of energy appears to be a sustainable alternative to traditional sources of energy such as thermic and nuclear energies, or hydropower, all of which pose significant environmental and geopolitical problems. Open to the Atlantic Ocean at latitudes between 35°N and 65°N, the Atlantic Coast of Europe is blessed with one of the highest wave powers in the world—estimated to be between 33 and 76 kW/m wave crest. The European Commission has taken a proactive attitude towards encouraging and promoting the development of marine renewable energy during the near future. In this context, the European transnational project EnergyMare was commissioned to investigate the potential of marine renewable energy resources on the European Atlantic Coast as well as test innovative measurement techniques and promote the development of test sites. The targeted wave energy resources were assessed via a 10-year hindcast, using state-of-the-art spectral wave models WaveWatch III and SWAN set up on unstructured meshes or fine-resolution regular grids. The hindcasts were combined to simultaneously provide a holistic view of the wave energy distribution across the European continental shelf and fine-resolution maps of specific areas, in particular around archipelagos and complex coastlines, where wave characteristics can be affected by the presence of small islands, headlands, or irregular bathymetry, and at wave energy test sites. The domain size and timescale of the hindcasts enable a comprehensive description of the wave climate along the European Atlantic Coast, both in terms of its distribution and its seasonal and interannual variations. In particular, a comparison of wave activity at various coastal locations shows its dependence on latitude and arguably its more significant dependence on exposure to open Atlantic waters. Wave activity during the winter months is clearly predominant, but dominant peak activity was also occasionally observed during spring and autumn. In spite of increased winter wave activity over the past couple of years, data are insufficient to enable conclusions to be made about a persistent trend in the international wave climate. Continental-scale mapping of wave energy resources together with fine-resolution mapping of coastal areas provides an overview of the wave resources to help identify the best areas for energy or test sites. Such mapping also provides information about local wave characteristics and resources that can be used for diminishing installation risks or optimising a site by selecting the most appropriate devices or array configurations. In addition to evaluating wave resources, fine estimates of energy yield from a site may require a good understanding of the wave interaction in an array of converters where significant wave interference may be induced. Finally, long-term trend estimates or periodic re-evaluations of wave resources to address potential wave climate change will probably be necessary to achieve sustainable wave energy exploitation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
University of the Highlands and Islands.
 
2
University of the Highlands and Islands.
 
Literatur
Zurück zum Zitat ABP MER. (2008). Atlas of UK marine renewable energy resources: Atlas pages. A strategic environmental assessment report, Department for Business Entreprise and Regulatory Reform. ABP MER. (2008). Atlas of UK marine renewable energy resources: Atlas pages. A strategic environmental assessment report, Department for Business Entreprise and Regulatory Reform.
Zurück zum Zitat Atan, R., Goggins, J., Hartnett, M., Agostinho, P., & Nash, S. (2016). Assessment of wave characteristics and resource variability at a 1/4-scale wave energy site in Galway Bay using waverider and high frequency radar (CODAR) data. Ocean Engineering, 117, 272–291.CrossRef Atan, R., Goggins, J., Hartnett, M., Agostinho, P., & Nash, S. (2016). Assessment of wave characteristics and resource variability at a 1/4-scale wave energy site in Galway Bay using waverider and high frequency radar (CODAR) data. Ocean Engineering, 117, 272–291.CrossRef
Zurück zum Zitat Atan, R., Goggins, J., & Nash, S. (2015). A preliminary assessment of the wave characteristics at the Atlantic Marine Energy Test Site (AMETS) using SWAN. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France. Atan, R., Goggins, J., & Nash, S. (2015). A preliminary assessment of the wave characteristics at the Atlantic Marine Energy Test Site (AMETS) using SWAN. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France.
Zurück zum Zitat Barstow, S., Mollison, D., & Cruz, J. (2008). The wave energy resource. In Cruz, J. (Ed.), Ocean wave energy (pp. 40). Springer. Barstow, S., Mollison, D., & Cruz, J. (2008). The wave energy resource. In Cruz, J. (Ed.), Ocean wave energy (pp. 40). Springer.
Zurück zum Zitat Barstow, S., Mørk, G., Lønseth, L., & Mathisen J. P. (2009). WorldWaves wave energy resource assessments for the deep ocean to the coast. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden (pp. 149–159). Barstow, S., Mørk, G., Lønseth, L., & Mathisen J. P. (2009). WorldWaves wave energy resource assessments for the deep ocean to the coast. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden (pp. 149–159).
Zurück zum Zitat Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.CrossRef Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.CrossRef
Zurück zum Zitat Bertotti, L., & Cavaleri, L. (2012). Modelling waves at Orkney coastal locations. Journal of Marine Systems, 96–97, 116–121.CrossRef Bertotti, L., & Cavaleri, L. (2012). Modelling waves at Orkney coastal locations. Journal of Marine Systems, 96–97, 116–121.CrossRef
Zurück zum Zitat Booij, N., & Holthuijsen, L. H. (1987). Propagation of ocean waves in discrete spectral wave models. Journal of Computational Physics, 68(2), 307–326.CrossRefMATH Booij, N., & Holthuijsen, L. H. (1987). Propagation of ocean waves in discrete spectral wave models. Journal of Computational Physics, 68(2), 307–326.CrossRefMATH
Zurück zum Zitat Booij, N., RisR, C., & Holthuijsen, L. H. (1999). A third generation model for coastal regions. Part I: model description and validation. Journal of Geophysical Research, 104(C4), 7649–7666.CrossRef Booij, N., RisR, C., & Holthuijsen, L. H. (1999). A third generation model for coastal regions. Part I: model description and validation. Journal of Geophysical Research, 104(C4), 7649–7666.CrossRef
Zurück zum Zitat Cavaleri, L., & Malanotte-Rizzoli, P. (1981). Wind wave prediction in shallow water. Theory and applications. Journal of Geophysical Research, 86C11, 10961–10973. Cavaleri, L., & Malanotte-Rizzoli, P. (1981). Wind wave prediction in shallow water. Theory and applications. Journal of Geophysical Research, 86C11, 10961–10973.
Zurück zum Zitat DHI. (2007). MIKE21 SW—Spectral waves FM module User guide. Denmark: Scientific Document, Danish Hydraulic Institute. DHI. (2007). MIKE21 SW—Spectral waves FM module User guide. Denmark: Scientific Document, Danish Hydraulic Institute.
Zurück zum Zitat Dietrich, J. C., Ziljema, M., Allier, P. E., Holthuijsen, L. H., Booij, N., Meixner, J. D., et al. (2013). Limiters for spectral propagation velocities in SWAN. Ocean Modelling, 70, 85–102.CrossRef Dietrich, J. C., Ziljema, M., Allier, P. E., Holthuijsen, L. H., Booij, N., Meixner, J. D., et al. (2013). Limiters for spectral propagation velocities in SWAN. Ocean Modelling, 70, 85–102.CrossRef
Zurück zum Zitat European Commission. (2015). Renewable energy progress report, Report from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions, SWD (2015), p. 117. European Commission. (2015). Renewable energy progress report, Report from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions, SWD (2015), p. 117.
Zurück zum Zitat Gleizon, P., Campuzano F. J., Carracedo García, P., Gomez B., & Martinez, A. (2015). Wave energy mapping along the European Atlantic coast. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France. Gleizon, P., Campuzano F. J., Carracedo García, P., Gomez B., & Martinez, A. (2015). Wave energy mapping along the European Atlantic coast. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France.
Zurück zum Zitat Gleizon, P., & Murray, A. (2014). Modelling wave energy in archipelagos—Case of northern Scotland. In Proceedings of the 2nd Environmental Interactions of Marine Renewable Energy Technologies, Stornoway, United Kingdom. Gleizon, P., & Murray, A. (2014). Modelling wave energy in archipelagos—Case of northern Scotland. In Proceedings of the 2nd Environmental Interactions of Marine Renewable Energy Technologies, Stornoway, United Kingdom.
Zurück zum Zitat Gleizon, P., & Woolf, D. (2013). Wave energy assessment in Scotland. In Proceedings of the 10th European Wave and Tidal Energy Conference, Aalborg, Denmark. Gleizon, P., & Woolf, D. (2013). Wave energy assessment in Scotland. In Proceedings of the 10th European Wave and Tidal Energy Conference, Aalborg, Denmark.
Zurück zum Zitat Guedes Soares, C., Weisse, R., Carretero, J. C., & Alvarez, E. (2002). A 40 years hindcast of wind, sea level and waves in European waters. In Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2002), Oslo, Norway. Guedes Soares, C., Weisse, R., Carretero, J. C., & Alvarez, E. (2002). A 40 years hindcast of wind, sea level and waves in European waters. In Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2002), Oslo, Norway.
Zurück zum Zitat Guillou, N. (2015). Evaluation of wave energy potential in the Sea of Iroise with two spectral models. Ocean Engineering, 106, 141–151.CrossRef Guillou, N. (2015). Evaluation of wave energy potential in the Sea of Iroise with two spectral models. Ocean Engineering, 106, 141–151.CrossRef
Zurück zum Zitat Guillou, N., & Chapalain, G. (2015). Numerical modelling of nearshore wave energy resource in the Sea of Iroise. Renewable Energy, 83, 942–953.CrossRef Guillou, N., & Chapalain, G. (2015). Numerical modelling of nearshore wave energy resource in the Sea of Iroise. Renewable Energy, 83, 942–953.CrossRef
Zurück zum Zitat Hasselmann, K. (1962). On the nonlinear energy transfer in a gravity-wave spectrum—Part I. General Theory. Journal of Fluid Mechanics, 12, 481–500.MathSciNetCrossRefMATH Hasselmann, K. (1962). On the nonlinear energy transfer in a gravity-wave spectrum—Part I. General Theory. Journal of Fluid Mechanics, 12, 481–500.MathSciNetCrossRefMATH
Zurück zum Zitat Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright D. E., Enke, K., et al. (1973). Measurements of wind-wave growth and swell decayduring the Joint North Sea Wave Project (JONSWAP), Deutschen Hydrographischen Zeitschrift, Suppl. A(8) n° 12, pp. 95. Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright D. E., Enke, K., et al. (1973). Measurements of wind-wave growth and swell decayduring the Joint North Sea Wave Project (JONSWAP), Deutschen Hydrographischen Zeitschrift, Suppl. A(8) n° 12, pp. 95.
Zurück zum Zitat Hersbach, H., & Janssen, P. A. E. M. (1999). Improvement of the short-fetch behavior in the wave ocean model (WAM). Journal of Atmospheric and Oceanic Technology, 16, 884–892.CrossRef Hersbach, H., & Janssen, P. A. E. M. (1999). Improvement of the short-fetch behavior in the wave ocean model (WAM). Journal of Atmospheric and Oceanic Technology, 16, 884–892.CrossRef
Zurück zum Zitat Iglesias, G., & Carballo, R. (2009). Wave energy potential along the Death Coast (Spain). Energy, 34, 1963–1975.CrossRef Iglesias, G., & Carballo, R. (2009). Wave energy potential along the Death Coast (Spain). Energy, 34, 1963–1975.CrossRef
Zurück zum Zitat Iglesias, G., & Carballo, R. (2010a). Offshore and inshore wave energy assessment: Asturias (N Spain). Energy, 35, 1964–1972.CrossRef Iglesias, G., & Carballo, R. (2010a). Offshore and inshore wave energy assessment: Asturias (N Spain). Energy, 35, 1964–1972.CrossRef
Zurück zum Zitat Iglesias, G., & Carballo, R. (2010b). Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy, 35, 2490–2500.CrossRef Iglesias, G., & Carballo, R. (2010b). Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy, 35, 2490–2500.CrossRef
Zurück zum Zitat Iglesias, G., & Carballo, R. (2010c). Wave energy resource in the Estaca de Bares area (Spain). Renewable Energy, 35, 1574–1594.CrossRef Iglesias, G., & Carballo, R. (2010c). Wave energy resource in the Estaca de Bares area (Spain). Renewable Energy, 35, 1574–1594.CrossRef
Zurück zum Zitat Iglesias, G., Lopez, M., Carballo, R., Castro, A., Fraguela, J. A., & Frigaard, P. (2009). Wave energy potential in Galicia (NW Spain). Renewable Energy, 34, 2323–2333.CrossRef Iglesias, G., Lopez, M., Carballo, R., Castro, A., Fraguela, J. A., & Frigaard, P. (2009). Wave energy potential in Galicia (NW Spain). Renewable Energy, 34, 2323–2333.CrossRef
Zurück zum Zitat Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14, 1271–1285.CrossRef Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14, 1271–1285.CrossRef
Zurück zum Zitat Leonard, B. P. (1979). A stable an accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 18, 17–74. Leonard, B. P. (1979). A stable an accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 18, 17–74.
Zurück zum Zitat Leonard, B. P. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88, 59–98.CrossRefMATH Leonard, B. P. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88, 59–98.CrossRefMATH
Zurück zum Zitat Lopez, I., Andreu, J., Ceballos, S., Martínez de Alegría, I., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.CrossRef Lopez, I., Andreu, J., Ceballos, S., Martínez de Alegría, I., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.CrossRef
Zurück zum Zitat May, V. J., Hansom, J. D. (2003). Coastal geomorphology of Great Britain, Geological Conservation Review Series (Vol. 28, pp. 754). ISBN 1 86107 484 0. May, V. J., Hansom, J. D. (2003). Coastal geomorphology of Great Britain, Geological Conservation Review Series (Vol. 28, pp. 754). ISBN 1 86107 484 0.
Zurück zum Zitat NCEP/NWS/NOAA/U.S. Department of Commerce. (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colorado. Retrieved February 11, 2015, from http://dx.doi.org/10.5065/D6M043C6. NCEP/NWS/NOAA/U.S. Department of Commerce. (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colorado. Retrieved February 11, 2015, from http://​dx.​doi.​org/​10.​5065/​D6M043C6.
Zurück zum Zitat Nielsen, P. (2009). Coastal and Estuarine processes, advanced series on ocean engineering (Vol. 29). World Scientific. Nielsen, P. (2009). Coastal and Estuarine processes, advanced series on ocean engineering (Vol. 29). World Scientific.
Zurück zum Zitat Piollé, J. F., Croizé-Fillon, D. (2012). Operation of CERSAT data centre. Ifremer report 13/2 213 213. Piollé, J. F., Croizé-Fillon, D. (2012). Operation of CERSAT data centre. Ifremer report 13/2 213 213.
Zurück zum Zitat Pontes, M. T. (1998). Assessing the European wave energy resource. Journal of Offshore Mechanics and Artic Engineering, 120(4), 226–231.CrossRef Pontes, M. T. (1998). Assessing the European wave energy resource. Journal of Offshore Mechanics and Artic Engineering, 120(4), 226–231.CrossRef
Zurück zum Zitat Pontes, M. T., Athanassoulis, G. A., Barstow, S., Bertotti, L., Cavaleri, L., Holmes, B., et al. (1998). The European wave energy resource. In Proceedings of the 3rd European Wave Energy Conference, Patras, Greece. Pontes, M. T., Athanassoulis, G. A., Barstow, S., Bertotti, L., Cavaleri, L., Holmes, B., et al. (1998). The European wave energy resource. In Proceedings of the 3rd European Wave Energy Conference, Patras, Greece.
Zurück zum Zitat Robertson, B. (2017). Wave energy assessments: quantifying the resource and understanding the uncertainty. In Z. Yang & A. Copping (Ed.), Marine renewable energy: Resource characterization, practical energy harvest and effects on physical systems. Springer. Robertson, B. (2017). Wave energy assessments: quantifying the resource and understanding the uncertainty. In Z. Yang & A. Copping (Ed.), Marine renewable energy: Resource characterization, practical energy harvest and effects on physical systems. Springer.
Zurück zum Zitat Robertson, B., Hiles, C., & Buckham, B. (2014). Characterizing the near shore wave energy resource on the west coast of Vancouver Island. Canada, Renewable Energy, 71, 665–678.CrossRef Robertson, B., Hiles, C., & Buckham, B. (2014). Characterizing the near shore wave energy resource on the west coast of Vancouver Island. Canada, Renewable Energy, 71, 665–678.CrossRef
Zurück zum Zitat Robertson, B., Hiles, C., Luczko, E., & Buckham, B. (2016). Quantifying wave power and wave energy converter array production potential. International Journal of Marine Energy, 14, 143–160.CrossRef Robertson, B., Hiles, C., Luczko, E., & Buckham, B. (2016). Quantifying wave power and wave energy converter array production potential. International Journal of Marine Energy, 14, 143–160.CrossRef
Zurück zum Zitat Roland, A. (2009) Development of WWM II: Spectral wave modelling on unstructured meshes, Ph.D. thesis, Technische University at Darmstadt, Institute of Hydraulic and Water Resources Engineering. Roland, A. (2009) Development of WWM II: Spectral wave modelling on unstructured meshes, Ph.D. thesis, Technische University at Darmstadt, Institute of Hydraulic and Water Resources Engineering.
Zurück zum Zitat Stelling, G. S., & Leendertse J. J. (1992). Approximation of convective processes by cyclic AOI methods. In Proceedings of 2nd International Conference on Estuarine and Coastal Modelling, ASCE Tampa, Florida (pp. 771–782). Stelling, G. S., & Leendertse J. J. (1992). Approximation of convective processes by cyclic AOI methods. In Proceedings of 2nd International Conference on Estuarine and Coastal Modelling, ASCE Tampa, Florida (pp. 771–782).
Zurück zum Zitat Tolman, H. L. (1990). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21, 782–797.CrossRef Tolman, H. L. (1990). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21, 782–797.CrossRef
Zurück zum Zitat Tolman, H. L. (2002). Alleviating the garden sprinkler effect in wind wave models. Ocean Modelling, 4, 269–289.CrossRef Tolman, H. L. (2002). Alleviating the garden sprinkler effect in wind wave models. Ocean Modelling, 4, 269–289.CrossRef
Zurück zum Zitat Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., & Björkqvist, Kahma K. K. (2014). Wave modelling in archipelagos. Coastal Engineering, 83, 205–220.CrossRef Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., & Björkqvist, Kahma K. K. (2014). Wave modelling in archipelagos. Coastal Engineering, 83, 205–220.CrossRef
Zurück zum Zitat Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54, 151–170.CrossRef Van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54, 151–170.CrossRef
Zurück zum Zitat Venugopal, V., & Nemalidinne, R. (2015). Wave resource assessment for Scottish waters using a large scale North Atlantic spectral wave model. Renewable Energy, 76, 503–525.CrossRef Venugopal, V., & Nemalidinne, R. (2015). Wave resource assessment for Scottish waters using a large scale North Atlantic spectral wave model. Renewable Energy, 76, 503–525.CrossRef
Zurück zum Zitat WAMDI group (1988) The WAM model—a third generation wave prediction model, Journal of Physical Oceanography, 18, 1775–1810. WAMDI group (1988) The WAM model—a third generation wave prediction model, Journal of Physical Oceanography, 18, 1775–1810.
Zurück zum Zitat WISE Group. (2007). Wave modeling—The state of the art. Progress in Oceanography, 75, 603–674. WISE Group. (2007). Wave modeling—The state of the art. Progress in Oceanography, 75, 603–674.
Zurück zum Zitat Yang, Z., & Wang T. (2015). Modelling wave resource characterization using and unstructured grid coastal ocean model. In Proceedings of the 11th European Wave and Tidal Energy Conference 2015, Nantes, France. Yang, Z., & Wang T. (2015). Modelling wave resource characterization using and unstructured grid coastal ocean model. In Proceedings of the 11th European Wave and Tidal Energy Conference 2015, Nantes, France.
Zurück zum Zitat Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57, 267–277.CrossRef Zijlema, M. (2010). Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering, 57, 267–277.CrossRef
Metadaten
Titel
Wave Energy Resources Along the European Atlantic Coast
verfasst von
Philippe Gleizon
Francisco Campuzano
Pablo Carracedo
André Martinez
Jamie Goggins
Reduan Atan
Stephen Nash
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_2