Skip to main content
Erschienen in: Adsorption 7/2020

17.03.2020

Hydrophobic activated carbon for elevated-temperature pressure swing adsorption

verfasst von: Peixuan Hao, Yixiang Shi, Shuang Li, Ningsheng Cai

Erschienen in: Adsorption | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Elevated temperature pressure swing adsorption is a newly developed gas purification technology, wherein the product gas recovery rate can be significantly improved by adding a steam rinse and purge. Furthermore, high temperature industrial syngas can be directly purified at elevated temperatures, so the temperature variation during purification process is not as large as that in Selexol, Rectisol or some other methods, which benefits to the simplification of heat management and improvement of energy efficiency. At working temperatures of approximately 200 °C, activated carbon is considered to be a promising adsorbent. Nevertheless, activated carbon also adsorbs large amounts of steam during rinse and purge, which affects its adsorption capacity. Herein, hydrophobic activated carbon was synthesized by impregnation and characterized, achieving a contact angle with a water droplet of up to 134°. When exposed to wet air, the weight increase of the hydrophobic adsorbent was 0.3%, whereas it was approximately 12% for the commercial activated carbon, which can be mainly attributed to vapor adsorption. The CO2 adsorption capacity was tested under humid conditions at 200 °C on a fixed bed. The effect of steam on the hydrophobic adsorbent was much smaller than that on the commercial adsorbent. The working capacity decreased from 0.091 to 0.009 mmol/g when the commercial activated carbon was operated under steam at 1 atm, whereas the hydrophobic material exhibited a stable and desired working capacity at the same condition, which was around 0.05 mmol/g. Steam rinse and purge were demonstrated to be feasible for the hydrophobic adsorbent and the introducing of steam rinse could not only compensate for the deterioration of adsorption capacity resulting from impregnation, but further improve the purification efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alptekin, G.: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture. TDA Research, Golden (2012)CrossRef Alptekin, G.: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture. TDA Research, Golden (2012)CrossRef
Zurück zum Zitat Anwar, M., Hogarth, C.A., Bulpett, R.: An XPS study of amorphous MoO3/SiO films deposited by co-evaporation. J. Mater. Sci. 25, 1784–1788 (1990)CrossRef Anwar, M., Hogarth, C.A., Bulpett, R.: An XPS study of amorphous MoO3/SiO films deposited by co-evaporation. J. Mater. Sci. 25, 1784–1788 (1990)CrossRef
Zurück zum Zitat Boon, J., Cobden, P.D., Van Dijk, H.A.J., Hoogland, C., van Selow, E.V., van Sint Annaland, M.: Isotherm model for high-temperature, high-pressure adsorption of CO2 and H2O on K-promoted hydrotalcite. Chem. Eng. J. 248, 406–414 (2014)CrossRef Boon, J., Cobden, P.D., Van Dijk, H.A.J., Hoogland, C., van Selow, E.V., van Sint Annaland, M.: Isotherm model for high-temperature, high-pressure adsorption of CO2 and H2O on K-promoted hydrotalcite. Chem. Eng. J. 248, 406–414 (2014)CrossRef
Zurück zum Zitat Boon, J., Cobden, P.D., Van Dijk, H.A.J., van Sint Annaland, M.: High-temperature pressure swing adsorption cycle design for sorption-enhanced water–gas shift. Chem. Eng. Sci. 122, 219–231 (2015)CrossRef Boon, J., Cobden, P.D., Van Dijk, H.A.J., van Sint Annaland, M.: High-temperature pressure swing adsorption cycle design for sorption-enhanced water–gas shift. Chem. Eng. Sci. 122, 219–231 (2015)CrossRef
Zurück zum Zitat Chaubey, R., Sahu, S., James, O.O., Maity, S.: A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 23, 443–462 (2013)CrossRef Chaubey, R., Sahu, S., James, O.O., Maity, S.: A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 23, 443–462 (2013)CrossRef
Zurück zum Zitat Coenen, K., Gallucci, F., Pio, G., Cobden, P., van Dijk, E., Hensen, E., van Sint Annaland, M.: On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications. Chem. Eng. J. 314, 554–569 (2017)CrossRef Coenen, K., Gallucci, F., Pio, G., Cobden, P., van Dijk, E., Hensen, E., van Sint Annaland, M.: On the influence of steam on the CO2 chemisorption capacity of a hydrotalcite-based adsorbent for SEWGS applications. Chem. Eng. J. 314, 554–569 (2017)CrossRef
Zurück zum Zitat Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)CrossRef Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)CrossRef
Zurück zum Zitat Fletcher, A.J., Yüzak, Y., Thomas, K.M.: Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)CrossRef Fletcher, A.J., Yüzak, Y., Thomas, K.M.: Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)CrossRef
Zurück zum Zitat Fu, Q., Yan, H., Shen, Y., Qin, Y., Zhang, D., Zhou, Y.: Optimal design and control of pressure swing adsorption process for N2/CH4 separation. J. Clean. Prod. 170, 704–714 (2018)CrossRef Fu, Q., Yan, H., Shen, Y., Qin, Y., Zhang, D., Zhou, Y.: Optimal design and control of pressure swing adsorption process for N2/CH4 separation. J. Clean. Prod. 170, 704–714 (2018)CrossRef
Zurück zum Zitat Hagio, T., Takase, A., Umebayashi, S.: X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett. 11, 878–880 (1992)CrossRef Hagio, T., Takase, A., Umebayashi, S.: X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett. 11, 878–880 (1992)CrossRef
Zurück zum Zitat Hao, P., Shi, Y., Li, S., Zhu, X., Cai, N.: Correlations between adsorbent characteristics and the performance of pressure swing adsorption separation process. Fuel 230, 9–17 (2018)CrossRef Hao, P., Shi, Y., Li, S., Zhu, X., Cai, N.: Correlations between adsorbent characteristics and the performance of pressure swing adsorption separation process. Fuel 230, 9–17 (2018)CrossRef
Zurück zum Zitat Horikawa, T., Sekida, T., Hayashi, J.I., Katoh, M., Do, D.D.: A new adsorption–desorption model for water adsorption in porous carbons. Carbon 49, 416–424 (2011)CrossRef Horikawa, T., Sekida, T., Hayashi, J.I., Katoh, M., Do, D.D.: A new adsorption–desorption model for water adsorption in porous carbons. Carbon 49, 416–424 (2011)CrossRef
Zurück zum Zitat Horikawa, T., Sakao, N., Sekida, T., Hayashi, J.I., Do, D.D., Katoh, M.: Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50, 1833–1842 (2012)CrossRef Horikawa, T., Sakao, N., Sekida, T., Hayashi, J.I., Do, D.D., Katoh, M.: Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50, 1833–1842 (2012)CrossRef
Zurück zum Zitat Khunpolgrang, J., Yosantea, S., Kongnoo, A., Phalakornkule, C.: Alternative PSA process cycle with combined vacuum regeneration and nitrogen purging for CH4/CO2 separation. Fuel 140, 171–177 (2015)CrossRef Khunpolgrang, J., Yosantea, S., Kongnoo, A., Phalakornkule, C.: Alternative PSA process cycle with combined vacuum regeneration and nitrogen purging for CH4/CO2 separation. Fuel 140, 171–177 (2015)CrossRef
Zurück zum Zitat Li, S., Hao, P., Zhu, X., Shi, Y., Cai, N., Li, S., Jiang, H.: On-site demonstration of an elevated temperature hydrogen clean-up unit for fuel cell applications. Adsorption 25, 1683–1693 (2019)CrossRef Li, S., Hao, P., Zhu, X., Shi, Y., Cai, N., Li, S., Jiang, H.: On-site demonstration of an elevated temperature hydrogen clean-up unit for fuel cell applications. Adsorption 25, 1683–1693 (2019)CrossRef
Zurück zum Zitat Ling, J., Ntiamoah, A., Xiao, P., Webley, P.A., Zhai, Y.: Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture. Chem. Eng. J. 265, 47–57 (2015)CrossRef Ling, J., Ntiamoah, A., Xiao, P., Webley, P.A., Zhai, Y.: Effects of feed gas concentration, temperature and process parameters on vacuum swing adsorption performance for CO2 capture. Chem. Eng. J. 265, 47–57 (2015)CrossRef
Zurück zum Zitat Liu, H.B., Yang, B., Xue, N.D.: Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. J. Hazard. Mater. 318, 425–432 (2016)CrossRef Liu, H.B., Yang, B., Xue, N.D.: Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. J. Hazard. Mater. 318, 425–432 (2016)CrossRef
Zurück zum Zitat Liu, L., Tan, S.J., Horikawa, T., Do, D.D., Nicholson, D., Liu, J.: Water adsorption on carbon—a review. Adv. Colloid Interface Sci. 250, 64–78 (2017)CrossRef Liu, L., Tan, S.J., Horikawa, T., Do, D.D., Nicholson, D., Liu, J.: Water adsorption on carbon—a review. Adv. Colloid Interface Sci. 250, 64–78 (2017)CrossRef
Zurück zum Zitat Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20, 511–524 (2014)CrossRef Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption 20, 511–524 (2014)CrossRef
Zurück zum Zitat Nikolaidis, G.N., Kikkinides, E.S., Georgiadis, M.C.: Model-based approach for the evaluation of materials and processes for post-combustion carbon dioxide capture from flue gas by PSA/VSA processes. Ind. Eng. Chem. Res. 55, 635–646 (2016)CrossRef Nikolaidis, G.N., Kikkinides, E.S., Georgiadis, M.C.: Model-based approach for the evaluation of materials and processes for post-combustion carbon dioxide capture from flue gas by PSA/VSA processes. Ind. Eng. Chem. Res. 55, 635–646 (2016)CrossRef
Zurück zum Zitat Reijers, R., van Selow, E., Cobden, P., Boon, J., van den Brink, R.: SEWGS process cycle optimization. Energy Procedia 4, 1155–1161 (2011)CrossRef Reijers, R., van Selow, E., Cobden, P., Boon, J., van den Brink, R.: SEWGS process cycle optimization. Energy Procedia 4, 1155–1161 (2011)CrossRef
Zurück zum Zitat Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22, 702–708 (2006)CrossRef Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22, 702–708 (2006)CrossRef
Zurück zum Zitat Sircar, S., Golden, T.C.: Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000)CrossRef Sircar, S., Golden, T.C.: Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35, 667–687 (2000)CrossRef
Zurück zum Zitat Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007)CrossRef Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007)CrossRef
Zurück zum Zitat Voldsund, M., Jordal, K., Anantharaman, R.: Hydrogen production with CO2 capture. Int. J. Hydrogen Energy 41, 4969–4992 (2016)CrossRef Voldsund, M., Jordal, K., Anantharaman, R.: Hydrogen production with CO2 capture. Int. J. Hydrogen Energy 41, 4969–4992 (2016)CrossRef
Zurück zum Zitat Yin, Q., Jay, K., Lin, Y.S.: Oxygen sorption and desorption properties of Sr–Co–Fe oxide. Chem. Eng. Sci. 63, 2211–2218 (2008)CrossRef Yin, Q., Jay, K., Lin, Y.S.: Oxygen sorption and desorption properties of Sr–Co–Fe oxide. Chem. Eng. Sci. 63, 2211–2218 (2008)CrossRef
Zurück zum Zitat Yu, X.R., Hantsche, H.: Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy. Surf. Interface Anal. 20, 555–558 (1993)CrossRef Yu, X.R., Hantsche, H.: Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy. Surf. Interface Anal. 20, 555–558 (1993)CrossRef
Zurück zum Zitat Yu, C.H., Huang, C.H., Tan, C.S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)CrossRef Yu, C.H., Huang, C.H., Tan, C.S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012)CrossRef
Zurück zum Zitat Yuan, B., Wu, X., Chen, Y., Huang, J., Luo, H., Deng, S.: Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. Environ. Sci. Technol. 47, 5474–5480 (2013)CrossRef Yuan, B., Wu, X., Chen, Y., Huang, J., Luo, H., Deng, S.: Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. Environ. Sci. Technol. 47, 5474–5480 (2013)CrossRef
Zurück zum Zitat Zhao, Y., Yao, K.X., Teng, B., Zhang, T., Han, Y.: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy Environ. Sci. 6, 3684–3692 (2013)CrossRef Zhao, Y., Yao, K.X., Teng, B., Zhang, T., Han, Y.: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy Environ. Sci. 6, 3684–3692 (2013)CrossRef
Zurück zum Zitat Zapata, P.A., Faria, J., Ruiz, M.P., Jentoft, R.E., Resasco, D.E.: Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J. Am. Chem. Soc. 134, 8570–8578 (2012)CrossRef Zapata, P.A., Faria, J., Ruiz, M.P., Jentoft, R.E., Resasco, D.E.: Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J. Am. Chem. Soc. 134, 8570–8578 (2012)CrossRef
Zurück zum Zitat Zhu, X., Shi, Y., Cai, N.: Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energy 176, 196–208 (2016)CrossRef Zhu, X., Shi, Y., Cai, N.: Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energy 176, 196–208 (2016)CrossRef
Zurück zum Zitat Zhu, X., Shi, Y., Li, S., Cai, N.: Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energy 229, 1061–1071 (2018)CrossRef Zhu, X., Shi, Y., Li, S., Cai, N.: Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energy 229, 1061–1071 (2018)CrossRef
Zurück zum Zitat Zhu, X., Li, S., Shi, Y., Cai, N.: Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energy Combust. Sci. 75, 100784 (2019)CrossRef Zhu, X., Li, S., Shi, Y., Cai, N.: Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energy Combust. Sci. 75, 100784 (2019)CrossRef
Metadaten
Titel
Hydrophobic activated carbon for elevated-temperature pressure swing adsorption
verfasst von
Peixuan Hao
Yixiang Shi
Shuang Li
Ningsheng Cai
Publikationsdatum
17.03.2020
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 7/2020
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-020-00223-6

Weitere Artikel der Ausgabe 7/2020

Adsorption 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.