Skip to main content
Erschienen in: Rare Metals 1/2019

04.01.2015

Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material

verfasst von: Chang-Chang Xu, Ying Wang, Li Li, Yi-Jing Wang, Li-Fang Jiao, Hua-Tang Yuan

Erschienen in: Rare Metals | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monocrystal LiMn0.6Fe0.4PO4 cathode material was obtained via hydrothermal method at 180 °C for 10 h without any surfactant. The effects of hydrothermal time on the phase and morphology of the material were discussed. By controlling the reaction solutions, the rodlike, flowerlike, and strawlike LiMn0.6Fe0.4PO4 cathode materials were synthesized. Electrochemical performances show that the rodlike LiMn0.6Fe0.4PO4 has the best electrochemical properties. The initial discharge capacity of the rodlike structure is 106.4 mAh·g−1, which is higher than those of flowerlike and strawlike materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater. 2010;22(3):691.CrossRef Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater. 2010;22(3):691.CrossRef
[2]
Zurück zum Zitat Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.CrossRef Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.CrossRef
[3]
Zurück zum Zitat Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem. 2011;21(27):9938.CrossRef Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem. 2011;21(27):9938.CrossRef
[4]
Zurück zum Zitat Pitchai R, Thavasi V, Mhaisalkar SG, Ramakrishna S. Nanostructured cathode materials: a key for better performance in Li-ion batteries. J Mater Chem. 2011;21(30):11040.CrossRef Pitchai R, Thavasi V, Mhaisalkar SG, Ramakrishna S. Nanostructured cathode materials: a key for better performance in Li-ion batteries. J Mater Chem. 2011;21(30):11040.CrossRef
[5]
Zurück zum Zitat Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593.CrossRef Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593.CrossRef
[6]
Zurück zum Zitat Song HK, Lee KT, Kim MG, Nazar LF, Cho J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater. 2010;20(22):3818.CrossRef Song HK, Lee KT, Kim MG, Nazar LF, Cho J. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater. 2010;20(22):3818.CrossRef
[7]
Zurück zum Zitat Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320. Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320.
[8]
Zurück zum Zitat Xin XG, Shen JQ, Shi SQ. Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: a first-principles study. Chin Phys B. 2012;21(12):128202.CrossRef Xin XG, Shen JQ, Shi SQ. Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: a first-principles study. Chin Phys B. 2012;21(12):128202.CrossRef
[9]
Zurück zum Zitat Yang LJ, Wang JL, Yang CT, Mei LR. Preparation of silicon nanowires by hydrothermal and its physical properties. Chin J Rare Met. 2013;37(4):564. Yang LJ, Wang JL, Yang CT, Mei LR. Preparation of silicon nanowires by hydrothermal and its physical properties. Chin J Rare Met. 2013;37(4):564.
[10]
Zurück zum Zitat Ban LQ, Zhuang WD, Lu HQ, Yin YP, Wang Z. Progress in modification of layered cathode material Li-Ni-Co-Mn-O. Chin J Rare Met. 2013;37(5):820. Ban LQ, Zhuang WD, Lu HQ, Yin YP, Wang Z. Progress in modification of layered cathode material Li-Ni-Co-Mn-O. Chin J Rare Met. 2013;37(5):820.
[11]
Zurück zum Zitat Kim J, Seo DH, Kim SW, Park YU, Kang K. Mn based olivine electrode material with high power and energy. Chem Commun. 2010;46(8):1305.CrossRef Kim J, Seo DH, Kim SW, Park YU, Kang K. Mn based olivine electrode material with high power and energy. Chem Commun. 2010;46(8):1305.CrossRef
[12]
Zurück zum Zitat Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed. 2009;48(45):8559.CrossRef Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed. 2009;48(45):8559.CrossRef
[13]
Zurück zum Zitat Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Dai H. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed. 2011;50(32):7364.CrossRef Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Dai H. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed. 2011;50(32):7364.CrossRef
[14]
Zurück zum Zitat Guo YQ, Huang R, Song J, Wang X, Song C, Zhang YX. Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 C. Chin Phys B. 2012;21(6):066106.CrossRef Guo YQ, Huang R, Song J, Wang X, Song C, Zhang YX. Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 C. Chin Phys B. 2012;21(6):066106.CrossRef
[15]
Zurück zum Zitat Wang YR, Yang YF, Yang YB, Shao HX. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process. Mater Res Bull. 2009;44(11):2139.CrossRef Wang YR, Yang YF, Yang YB, Shao HX. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process. Mater Res Bull. 2009;44(11):2139.CrossRef
[16]
Zurück zum Zitat Pan XL, Xu CY, Zhen L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm. 2012;14(20):6412.CrossRef Pan XL, Xu CY, Zhen L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm. 2012;14(20):6412.CrossRef
[17]
Zurück zum Zitat Nie P, Shen LF, Zhang F, Chen L, Deng HF, Zhang XG. Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm. 2012;14(13):4284.CrossRef Nie P, Shen LF, Zhang F, Chen L, Deng HF, Zhang XG. Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm. 2012;14(13):4284.CrossRef
[18]
Zurück zum Zitat Zhang Y, Sun CS, Zhou Z. Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure. Electrochem Commun. 2009;11(6):1183.CrossRef Zhang Y, Sun CS, Zhou Z. Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure. Electrochem Commun. 2009;11(6):1183.CrossRef
[19]
Zurück zum Zitat Wang F, Yang J, Gao PF, NuLi YN, Wang JL. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. J Power Sources. 2011;196(23):10258.CrossRef Wang F, Yang J, Gao PF, NuLi YN, Wang JL. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. J Power Sources. 2011;196(23):10258.CrossRef
[20]
Zurück zum Zitat Yang Z, Yu HM, Wu CY, Cao GS, Xie J, Zhao XB. Preparation of nano-structured LiFexMn1–xPO4 (x = 0, 0.2, 0.4) by reflux method and research on the influences of Fe(II) substitution. J Mater Sci Technol. 2012;28(9):823.CrossRef Yang Z, Yu HM, Wu CY, Cao GS, Xie J, Zhao XB. Preparation of nano-structured LiFexMn1–xPO4 (x = 0, 0.2, 0.4) by reflux method and research on the influences of Fe(II) substitution. J Mater Sci Technol. 2012;28(9):823.CrossRef
[21]
Zurück zum Zitat Du HM, Jiao LF, Wang QH, Huan QH, Guo LJ, Si YC, Wang YJ, Yuan HT. Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm. 2013;15(30):6101.CrossRef Du HM, Jiao LF, Wang QH, Huan QH, Guo LJ, Si YC, Wang YJ, Yuan HT. Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm. 2013;15(30):6101.CrossRef
[22]
Zurück zum Zitat Chang XY, Wang ZX, Li XH, Zhang L, Guo HJ, Peng WJ. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull. 2005;40(9):1513.CrossRef Chang XY, Wang ZX, Li XH, Zhang L, Guo HJ, Peng WJ. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull. 2005;40(9):1513.CrossRef
Metadaten
Titel
Hydrothermal synthesis mechanism and electrochemical performance of LiMn0.6Fe0.4PO4 cathode material
verfasst von
Chang-Chang Xu
Ying Wang
Li Li
Yi-Jing Wang
Li-Fang Jiao
Hua-Tang Yuan
Publikationsdatum
04.01.2015
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 1/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-014-0434-9

Weitere Artikel der Ausgabe 1/2019

Rare Metals 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.