Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2016

06.09.2016

Hydrothermoelastic Stability of Functionally Graded Circular Cylindrical Shells Containing a Fluid

verfasst von: S. A. Bochkarev, S. V. Lekomtsev, V. P. Matveenko

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermoelastic and hydroelastic stability of heated circular cylindrical shells made of functionally graded materials and interacting with an internal flow of an ideal compressible fluid was investigated. The effective properties of the material vary across the shell thickness according to a power law and depend on temperature. By way of a mathematical formulation the problem on dynamics the elastic structure, the classical theory of shells and the principle of virtual displacements are used. The radial temperature distribution is determined by solving the one-dimensional heat conduction equation. Behavior of the fluid is described using the potential theory. The corresponding wave equation, together with impermeability and boundary conditions, are transformed to a system of equations with the use of the Bubnov–Galerkin method. The solution of the problem, found by employing a semianalytical version of the finite-element method, is reduced to computing the complex eigenvalues of a coupled system of equations. A comparative analysis of the circular cylindrical shells is carried out at different boundary conditions and for different values of the consistency index of the functionally graded material. The effect of a thermal load on the critical speed of the loss of stability and of flow speed on the thermoelastic stability is estimated. It is shown that a flowing fluid has the greatest effect on the stability boundaries of heated cantilevered shells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stresses., 21, No. 6, 593−626 (1998).CrossRef J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” J. Therm. Stresses., 21, No. 6, 593−626 (1998).CrossRef
2.
Zurück zum Zitat V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., 60, No. 5, 195−216 (2007).CrossRef V. Birman and L. W. Byrd, “Modeling and analysis of functionally graded materials and structures,” Appl. Mech. Rev., 60, No. 5, 195−216 (2007).CrossRef
3.
Zurück zum Zitat G. Praveen, C. Chin, and J. Reddy, “Thermoelastic analysis of functionally graded ceramic-metal cylinder,” J. Eng. Mech., 125, No. 11, 1259−1267 (1999).CrossRef G. Praveen, C. Chin, and J. Reddy, “Thermoelastic analysis of functionally graded ceramic-metal cylinder,” J. Eng. Mech., 125, No. 11, 1259−1267 (1999).CrossRef
4.
Zurück zum Zitat R. Shahsiah and M. R. Eslami, “Thermal buckling of functionally graded cylindrical shell,” J. Therm. Stress., 26, No. 3, 277−294 (2003).CrossRef R. Shahsiah and M. R. Eslami, “Thermal buckling of functionally graded cylindrical shell,” J. Therm. Stress., 26, No. 3, 277−294 (2003).CrossRef
5.
Zurück zum Zitat L. Wu, Z. Jiang, and J. Liu, “Thermoelastic stability of functionally graded cylindrical shells,” Compos. Struct., 70, No. 1, 60−68 (2005).CrossRef L. Wu, Z. Jiang, and J. Liu, “Thermoelastic stability of functionally graded cylindrical shells,” Compos. Struct., 70, No. 1, 60−68 (2005).CrossRef
6.
Zurück zum Zitat R. Kadoli and N. Ganesan, “Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition,” J. Sound Vib, 289, No. 3, 450−480 (2006).CrossRef R. Kadoli and N. Ganesan, “Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition,” J. Sound Vib, 289, No. 3, 450−480 (2006).CrossRef
7.
Zurück zum Zitat R. K. Bhangale, N. Ganesan, and C. Padmanabhan, “Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells,” J. Sound Vib., 292, No. 1−2, 341−371 (2006). R. K. Bhangale, N. Ganesan, and C. Padmanabhan, “Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells,” J. Sound Vib., 292, No. 1−2, 341−371 (2006).
8.
Zurück zum Zitat H. Haddadpour, S. Mahmoudkhani, and H. M. Navazi, “Free vibration analysis of functionally graded cylindrical shells including thermal effects,” Thin Wall. Struct., 45, No. 6, 591−599 (2007).CrossRef H. Haddadpour, S. Mahmoudkhani, and H. M. Navazi, “Free vibration analysis of functionally graded cylindrical shells including thermal effects,” Thin Wall. Struct., 45, No. 6, 591−599 (2007).CrossRef
9.
Zurück zum Zitat G. G. Sheng and X. Wang, “Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium,” J. Reinf. Plast. Comp., 27, No. 2, 117−134 (2008).CrossRef G. G. Sheng and X. Wang, “Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium,” J. Reinf. Plast. Comp., 27, No. 2, 117−134 (2008).CrossRef
10.
Zurück zum Zitat H. Haddadpour, S. Mahmoudkhani, and H. M. Navazi, “Supersonic flutter prediction of functionally graded cylindrical shells,” Compos. Struct., 83, No. 4, 391−398 (2008).CrossRef H. Haddadpour, S. Mahmoudkhani, and H. M. Navazi, “Supersonic flutter prediction of functionally graded cylindrical shells,” Compos. Struct., 83, No. 4, 391−398 (2008).CrossRef
11.
Zurück zum Zitat G. G. Sheng and X. Wang, “Thermomechanical vibration analysis of a functionally graded shell with flowing fluid,” Eur. J. Mech. A-Solid., 27, No. 6, 1075−1087 (2008).CrossRef G. G. Sheng and X. Wang, “Thermomechanical vibration analysis of a functionally graded shell with flowing fluid,” Eur. J. Mech. A-Solid., 27, No. 6, 1075−1087 (2008).CrossRef
12.
Zurück zum Zitat G. G. Sheng and X. Wang, “Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads,” Compos. Struct., 93, No. 1, 162−170 (2010).CrossRef G. G. Sheng and X. Wang, “Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads,” Compos. Struct., 93, No. 1, 162−170 (2010).CrossRef
13.
Zurück zum Zitat S. Mahmoudkhani, H. Haddadpour, and H. M. Navazi, “Supersonic flutter prediction of functionally graded conical shells,” Compos. Struct., 92, No. 2, 377−386 (2010).CrossRef S. Mahmoudkhani, H. Haddadpour, and H. M. Navazi, “Supersonic flutter prediction of functionally graded conical shells,” Compos. Struct., 92, No. 2, 377−386 (2010).CrossRef
14.
Zurück zum Zitat P. Malekzadeh and Y. Heydarpour, “Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment,” Compos. Struct., 94, No. 9, 2971−2981 (2012).CrossRef P. Malekzadeh and Y. Heydarpour, “Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment,” Compos. Struct., 94, No. 9, 2971−2981 (2012).CrossRef
15.
Zurück zum Zitat F. Sabri and A. A. Lakis, “Efficient hybrid finite element method for flutter prediction of functionally graded cylindrical shells,” J. Vib. Acoust., 136, No. 1, 011002 (2014).CrossRef F. Sabri and A. A. Lakis, “Efficient hybrid finite element method for flutter prediction of functionally graded cylindrical shells,” J. Vib. Acoust., 136, No. 1, 011002 (2014).CrossRef
16.
Zurück zum Zitat P. Malekzadeh, A. R. Fiouz, and M. Sobhrouyan, “Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment,” Int. J. Pres. Ves. Pip., 89, 210−221 (2012).CrossRef P. Malekzadeh, A. R. Fiouz, and M. Sobhrouyan, “Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment,” Int. J. Pres. Ves. Pip., 89, 210−221 (2012).CrossRef
17.
Zurück zum Zitat M. Akbari, Y. Kiani, and M. R. Eslami, “Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports,” Acta Mech., 226, No. 3,897−915 (2015). M. Akbari, Y. Kiani, and M. R. Eslami, “Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports,” Acta Mech., 226, No. 3,897−915 (2015).
18.
Zurück zum Zitat S. A. Botchkarev, S. V. Lekomtsev, and V. P. Matvienko, “Natural vibrations and stability of functionally graded cylindrical shells under the action of mechanical and thermal loads,” Mech. Compos. Mat.. Struct., 21, No. 2, 206−220 (2015). S. A. Botchkarev, S. V. Lekomtsev, and V. P. Matvienko, “Natural vibrations and stability of functionally graded cylindrical shells under the action of mechanical and thermal loads,” Mech. Compos. Mat.. Struct., 21, No. 2, 206−220 (2015).
19.
Zurück zum Zitat S. A. Bochkarev and S. V. Lekomtsev, “Natural vibrations of heated functionally graded cylindrical shells with a fluid,” PNRPU, Mech. Bull., 4, 19-35 (2015). S. A. Bochkarev and S. V. Lekomtsev, “Natural vibrations of heated functionally graded cylindrical shells with a fluid,” PNRPU, Mech. Bull., 4, 19-35 (2015).
20.
Zurück zum Zitat H. S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, Boca Raton: CRC Press, (2009).CrossRef H. S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, Boca Raton: CRC Press, (2009).CrossRef
21.
Zurück zum Zitat H. S. Shen and N. Noda, “Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments,” Int. J. Solid. Struct., 42, No. 16−17, 4641−4662 (2005). H. S. Shen and N. Noda, “Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments,” Int. J. Solid. Struct., 42, No. 16−17, 4641−4662 (2005).
22.
Zurück zum Zitat W. Q. Chen, Z. G. Bian, and H. J. Ding, “Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells,” Int. J. Mech. Sci., 46, No. 1, 159−171 (2004).CrossRef W. Q. Chen, Z. G. Bian, and H. J. Ding, “Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells,” Int. J. Mech. Sci., 46, No. 1, 159−171 (2004).CrossRef
23.
Zurück zum Zitat Z. Iqbal, M. N. Naeem, N. Sultana, S. H. Arshad, and A. G. Shah, “Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach,” Appl. Math. Mech., 30, No. 11, 1393−1404 (2009).CrossRef Z. Iqbal, M. N. Naeem, N. Sultana, S. H. Arshad, and A. G. Shah, “Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach,” Appl. Math. Mech., 30, No. 11, 1393−1404 (2009).CrossRef
24.
Zurück zum Zitat A. G. Shah, T. Mahmood, M. N. Naeem, and S. H. Arshad, “Vibrational study of fluid-filled functionally graded cylindrical shells resting on elastic foundations,” ISRN Mech. Eng., 2011, ID 892460 (2011). A. G. Shah, T. Mahmood, M. N. Naeem, and S. H. Arshad, “Vibrational study of fluid-filled functionally graded cylindrical shells resting on elastic foundations,” ISRN Mech. Eng., 2011, ID 892460 (2011).
25.
Zurück zum Zitat S. A. Bochkarev and C. V. Lekomtsev, Investigation of panel flutter of functionally graded circular cylindrical shells material,” PNRPU, Mech. Bull., No. 1, 57−75 (2014). S. A. Bochkarev and C. V. Lekomtsev, Investigation of panel flutter of functionally graded circular cylindrical shells material,” PNRPU, Mech. Bull., No. 1, 57−75 (2014).
26.
Zurück zum Zitat M. P. Païdoussis, Fluid−Structure Interactions: Slender Structures and Axial Flow, Vol. 2, London: Academic Press, (2003). M. P. Païdoussis, Fluid−Structure Interactions: Slender Structures and Axial Flow, Vol. 2, London: Academic Press, (2003).
27.
Zurück zum Zitat S. A. Bochkarev and V. P. Matveenko, “Specific features of dynamic behavior of stationary and rotating single/coaxial cylindrical shells interacting with the axial and rotational fluid flows,” J. Vib. Acoust., 137, 021001 (2015).CrossRef S. A. Bochkarev and V. P. Matveenko, “Specific features of dynamic behavior of stationary and rotating single/coaxial cylindrical shells interacting with the axial and rotational fluid flows,” J. Vib. Acoust., 137, 021001 (2015).CrossRef
28.
Zurück zum Zitat R. Kadoli and N. Ganesan, “Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid,” Compos. Struct., 60, No. 1, 19−32 (2003).CrossRef R. Kadoli and N. Ganesan, “Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid,” Compos. Struct., 60, No. 1, 19−32 (2003).CrossRef
29.
Zurück zum Zitat N. Ganesan and R. Kadoli, “A study on the dynamic stability of a cylindrical shell conveying a pulsatile flow of hot fluid,” J. Sound Vib., 274, No. 3−5, 953−984 (2004). N. Ganesan and R. Kadoli, “A study on the dynamic stability of a cylindrical shell conveying a pulsatile flow of hot fluid,” J. Sound Vib., 274, No. 3−5, 953−984 (2004).
30.
Zurück zum Zitat N. A. Alfutov, P. A. Zinov’ev, and V. G. Popov, Analysis of Multilayer Plates and Shells of Composite Materials, Moscow: Mashinostroenie, (1984). N. A. Alfutov, P. A. Zinov’ev, and V. G. Popov, Analysis of Multilayer Plates and Shells of Composite Materials, Moscow: Mashinostroenie, (1984).
31.
Zurück zum Zitat S. A. Bochkarev and V. P. Matveenko, “Numerical modelling of the stability of loaded shells of revolution containing fluid flows,” Appl. Mech. Techn. Phys., 49, No. 2, 313-322 (2008).CrossRef S. A. Bochkarev and V. P. Matveenko, “Numerical modelling of the stability of loaded shells of revolution containing fluid flows,” Appl. Mech. Techn. Phys., 49, No. 2, 313-322 (2008).CrossRef
32.
Zurück zum Zitat A. S. Vol’mir, Shells in Fluid and Gas Flows. Hydroelasticity Problems, Moscow: Nauka, (1979). A. S. Vol’mir, Shells in Fluid and Gas Flows. Hydroelasticity Problems, Moscow: Nauka, (1979).
33.
Zurück zum Zitat S. A.Bochkarev and V. P. Matveenko, “Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid,” Mech. Solids, 43, No. 3, 477-486 (2008). S. A.Bochkarev and V. P. Matveenko, “Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid,” Mech. Solids, 43, No. 3, 477-486 (2008).
34.
Zurück zum Zitat O. C. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill, (1972). O. C. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill, (1972).
35.
Zurück zum Zitat V. P. Matveenko, “On an algorithm of solving the problem on natural vibrations of elastic bodies by the finite element method,” Boundary–value problems of the elasticity and viscoelasticity theory, Sverdlovsk, 20-24 (1980). V. P. Matveenko, “On an algorithm of solving the problem on natural vibrations of elastic bodies by the finite element method,” Boundary–value problems of the elasticity and viscoelasticity theory, Sverdlovsk, 20-24 (1980).
36.
Zurück zum Zitat V. P. Matveenko, M. A.Sevodin, and N. V. Sevodina, “Applications of Muller’s method and the argument principle eigenvalue problems in solid mechanics,” Comput. Continuum Mech., No. 3, 331−336 (2014). V. P. Matveenko, M. A.Sevodin, and N. V. Sevodina, “Applications of Muller’s method and the argument principle eigenvalue problems in solid mechanics,” Comput. Continuum Mech., No. 3, 331−336 (2014).
37.
Zurück zum Zitat P. Jeyaraj, C. Padmanabhan, and N. Ganesan, “Vibro-acoustic response of a circular isotropic cylindrical shell under a thermal environment,” Int. J. Appl. Mech., 3, No. 3, 525−541 (2011). P. Jeyaraj, C. Padmanabhan, and N. Ganesan, “Vibro-acoustic response of a circular isotropic cylindrical shell under a thermal environment,” Int. J. Appl. Mech., 3, No. 3, 525−541 (2011).
Metadaten
Titel
Hydrothermoelastic Stability of Functionally Graded Circular Cylindrical Shells Containing a Fluid
verfasst von
S. A. Bochkarev
S. V. Lekomtsev
V. P. Matveenko
Publikationsdatum
06.09.2016
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2016
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-016-9601-4

Weitere Artikel der Ausgabe 4/2016

Mechanics of Composite Materials 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.