Skip to main content
Erschienen in: Journal of Polymer Research 12/2015

01.12.2015 | Original Paper

Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: influence of carrier and magnetic field strength

verfasst von: Mohamed S. A. Darwish, Ahmed El-Sabbagh, Ivan Stibor

Erschienen in: Journal of Polymer Research | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Core/shell nanoparticles of magnetic polyethylenimine (MPEI) were prepared by one-step co-precipitation process. MPEI were precipitated by mixing Fe2+/Fe3+ solution with polyethylenimine under basic media. The morphology, hydrodynamic size and the phase of the prepared magnetic nanoparticles were characterized using SEM, DLS and XRD, respectively. In addition, the functionality, thermal stability and magnetic properties were assessed using FTIR, TGA and VSM, respectively. The prepared magnetic nanoparticles able to generate local heat under alternative magnetic field caused by the delay in magnetic relaxation provide a benefit in cancer treatment. The strength effects of the applied magnetic field and the different viscosity carriers, namely water and ethanol, on the heating ability were investigated. It was an obvious rise of temperature by increasing in strength of applied magnetic field and by the exposure time. Heat transfer to the fluid was hindered by the viscosity of the carrier. The viscosity affects the heating properties through a Brownian mechanism and thus causes a significant specific absorption rate (SAR). The heating properties of the prepared MPEI nanoparticles with the highest SAR value (177.48 Wg−1) show their potential in hyperthermia application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Illés E, Szekeres M, Kupcsik E, Tóth IY, Farkas K, Jedlovszky-Hajdúa A, Tombácz E (2014) PEGylation of surfacted magnetite core–shell nanoparticles for biomedical application. Colloids Surf A Physicochem Eng Asp 460:429–440CrossRef Illés E, Szekeres M, Kupcsik E, Tóth IY, Farkas K, Jedlovszky-Hajdúa A, Tombácz E (2014) PEGylation of surfacted magnetite core–shell nanoparticles for biomedical application. Colloids Surf A Physicochem Eng Asp 460:429–440CrossRef
2.
Zurück zum Zitat Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef
3.
Zurück zum Zitat Chan A, Orme RP, Fricker RA, Roach P (2013) Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 65:497–514CrossRef Chan A, Orme RP, Fricker RA, Roach P (2013) Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 65:497–514CrossRef
4.
Zurück zum Zitat Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef
5.
Zurück zum Zitat Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129CrossRef Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129CrossRef
6.
Zurück zum Zitat Chung SH, Hoffmann A, Bader SD, Liu C, Kay B, Makowski L, Chen L (2004) Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett 85:2971–2973CrossRef Chung SH, Hoffmann A, Bader SD, Liu C, Kay B, Makowski L, Chen L (2004) Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett 85:2971–2973CrossRef
7.
Zurück zum Zitat Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496CrossRef Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B (2009) Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater 321:1493–1496CrossRef
8.
Zurück zum Zitat Kokabi M, Arabgol F, Manteghian M (2005) Nd2Fe14B permanent polymeric composite magnets. Iran Polym J 14:71–79 Kokabi M, Arabgol F, Manteghian M (2005) Nd2Fe14B permanent polymeric composite magnets. Iran Polym J 14:71–79
9.
Zurück zum Zitat Pickard MR, Barraud P, Chari DM (2011) The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 32:2274–2284CrossRef Pickard MR, Barraud P, Chari DM (2011) The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 32:2274–2284CrossRef
10.
Zurück zum Zitat Mahdavinia G, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K-cross-linked -carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344CrossRef Mahdavinia G, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K-cross-linked -carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344CrossRef
11.
Zurück zum Zitat Mousavian S, Ebadi-Dehaghani H, Ashouri D, Sadeghipour H, Jabbari F (2012) Effect of polymer matrix on the magnetic properties of polymer bonded magnets filled Fe3O4 nanoparticles. J Polym Res 19:1–9CrossRef Mousavian S, Ebadi-Dehaghani H, Ashouri D, Sadeghipour H, Jabbari F (2012) Effect of polymer matrix on the magnetic properties of polymer bonded magnets filled Fe3O4 nanoparticles. J Polym Res 19:1–9CrossRef
12.
Zurück zum Zitat Davaran S, Entezami AA (1994) A review on application of polymers in new drug delivery systems. Iran Polym J 6:273–289 Davaran S, Entezami AA (1994) A review on application of polymers in new drug delivery systems. Iran Polym J 6:273–289
13.
Zurück zum Zitat Wei S, Zhang Y, Xu J (2011) Preparation and properties of poly(acrylic acid-co-styrene)/Fe3O4 nanocomposites. J Polym Res 18:125–130CrossRef Wei S, Zhang Y, Xu J (2011) Preparation and properties of poly(acrylic acid-co-styrene)/Fe3O4 nanocomposites. J Polym Res 18:125–130CrossRef
14.
Zurück zum Zitat Mohammad Doulabi FS, Mohsen-Nia M (2013) Magnetic cobalt-zinc ferrite/PVAc nanocomposite: synthesis and characterization. Iran Polym J 22:9–14CrossRef Mohammad Doulabi FS, Mohsen-Nia M (2013) Magnetic cobalt-zinc ferrite/PVAc nanocomposite: synthesis and characterization. Iran Polym J 22:9–14CrossRef
15.
Zurück zum Zitat Barbosa-Barros L, García-Jimeno S, Estelrich J (2014) Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids Surf A Physicochem Eng Asp 450:121–129CrossRef Barbosa-Barros L, García-Jimeno S, Estelrich J (2014) Formation and characterization of biobased magnetic nanoparticles double coated with dextran and chitosan by layer-by-layer deposition. Colloids Surf A Physicochem Eng Asp 450:121–129CrossRef
16.
Zurück zum Zitat Tian J, Feng Y, Xu Y (2006) Synthesis of magnetite nanoparticles with PDLLA corona. J Polym Res 13:343–347CrossRef Tian J, Feng Y, Xu Y (2006) Synthesis of magnetite nanoparticles with PDLLA corona. J Polym Res 13:343–347CrossRef
17.
Zurück zum Zitat Bardajee G, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:1–13 Bardajee G, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:1–13
18.
Zurück zum Zitat Chen GJ, Wang LF (2011) Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des 17:2331–2351CrossRef Chen GJ, Wang LF (2011) Design of magnetic nanoparticles-assisted drug delivery system. Curr Pharm Des 17:2331–2351CrossRef
19.
Zurück zum Zitat Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. Biomed Sci Eng 5:715–719CrossRef Cheraghipour E, Javadpour S, Mehdizadeh AR (2012) Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. Biomed Sci Eng 5:715–719CrossRef
20.
Zurück zum Zitat Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT (2009) Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd 477:739–743CrossRef Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT (2009) Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd 477:739–743CrossRef
21.
Zurück zum Zitat Kocbek P, Obermajer NA, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26CrossRef Kocbek P, Obermajer NA, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26CrossRef
22.
Zurück zum Zitat Ota S, Yamazaki N, Tomitaka A, Yamada T, Takemura Y (2014) Hyperthermia using antibody-conjugated magnetic nanoparticles and its enhanced effect with cryptotanshinone. Nanomaterials 4:319–330CrossRef Ota S, Yamazaki N, Tomitaka A, Yamada T, Takemura Y (2014) Hyperthermia using antibody-conjugated magnetic nanoparticles and its enhanced effect with cryptotanshinone. Nanomaterials 4:319–330CrossRef
23.
Zurück zum Zitat Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398CrossRef Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398CrossRef
24.
Zurück zum Zitat Nesztor D, Bali K, Tóth IY, Szekeres M, Tombácz E (2015) Controlled clustering of carboxylated SPIONs through polyethylenimine. J Magn Magn Mater 380:144–149CrossRef Nesztor D, Bali K, Tóth IY, Szekeres M, Tombácz E (2015) Controlled clustering of carboxylated SPIONs through polyethylenimine. J Magn Magn Mater 380:144–149CrossRef
25.
Zurück zum Zitat Fajaroh F, Setyawan H (2012) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol 23:328–333CrossRef Fajaroh F, Setyawan H (2012) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol 23:328–333CrossRef
26.
Zurück zum Zitat Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–227CrossRef Li B, Jia D, Zhou Y, Hu Q, Cai W (2006) In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–227CrossRef
27.
Zurück zum Zitat Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef Qu J, Liu G, Wang Y, Hong R (2010) Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol 21:461–467CrossRef
28.
Zurück zum Zitat Kim CY, Xu L, Lee EH (2014) Self-heating of magnetite nanoparticles for a potential hyperthermia application. J Korean Phys Soc 65:261–266CrossRef Kim CY, Xu L, Lee EH (2014) Self-heating of magnetite nanoparticles for a potential hyperthermia application. J Korean Phys Soc 65:261–266CrossRef
29.
Zurück zum Zitat Estelrich J, Escribano E, Queralt J, Antònia Busquets M (2015) Review: iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101CrossRef Estelrich J, Escribano E, Queralt J, Antònia Busquets M (2015) Review: iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101CrossRef
30.
Zurück zum Zitat Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn 118:391–401CrossRef Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn 118:391–401CrossRef
31.
Zurück zum Zitat Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA (2011) Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging 29:272–280CrossRef Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA (2011) Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn Reson Imaging 29:272–280CrossRef
32.
Zurück zum Zitat Darwish MS, Stibor I (2015) Preparation and characterization of magnetite-PDMS composites by magnetic induction heating. Mater Chem Phys 164:163–169CrossRef Darwish MS, Stibor I (2015) Preparation and characterization of magnetite-PDMS composites by magnetic induction heating. Mater Chem Phys 164:163–169CrossRef
33.
Zurück zum Zitat Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383CrossRef Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383CrossRef
34.
Zurück zum Zitat Zhang LY, Gu HC, Wang XM (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311:228–233CrossRef Zhang LY, Gu HC, Wang XM (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311:228–233CrossRef
35.
Zurück zum Zitat Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef
Metadaten
Titel
Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: influence of carrier and magnetic field strength
verfasst von
Mohamed S. A. Darwish
Ahmed El-Sabbagh
Ivan Stibor
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0882-4

Weitere Artikel der Ausgabe 12/2015

Journal of Polymer Research 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.