Skip to main content

2023 | OriginalPaper | Buchkapitel

Identification of InhA-Inhibitors Interaction Fingerprints that Affect Residence Time

verfasst von : Magdalena Ługowska, Marcin Pacholczyk

Erschienen in: Bioinformatics and Biomedical Engineering

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drug development is a complex process that remains subject to risks and uncertainties. In its early days, much emphasis was placed on the equilibrium binding affinity of a drug to a particular target, which is described by the equilibrium dissociation constant (\(K_{d}\)). However, there are a large number of drugs that exhibit non-equilibrium binding properties. For this reason, optimization of other kinetic parameters such as dissociation constants (\(k_{off}\)) and association constants (\(k_{on}\)) is becoming increasingly important to improve accuracy in measuring in vivo efficacy. To achieve this, the concept of residence time between drug and target (\(\tau \)) was developed to account for the continuous elimination of the drug, the absence of equilibrium conditions, and the conformational dynamics of the target molecules. Residence time has been shown to be a better estimate of drug lifetime potency than equilibrium binding affinity and is recognized as a key parameter in drug development. However, because residence time is only one measure of drug potency, it provides only a limited picture of binding kinetics and affinity.
A machine-learning algorithm was proposed to identify molecular features affecting protein-ligand binding kinetics for a set of similar compounds. Molecular dynamics simulations of \(\tau \)RAMD results were used as model input. The study confirmed that \(\tau \)RAMD provides information about the characteristics of the dissociation pathway since the obtained dissociation trajectories can be used to identify the interactions that occur and the conformational changes of the system at subsequent time points. The proposed algorithm made it possible to obtain information on protein-ligand contacts that are specific to their residence times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Vauquelin, G.: Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding. Br. J. Pharmacol. 2319–2334 (2016) Vauquelin, G.: Effects of target binding kinetics on in vivo drug efficacy: koff, kon and rebinding. Br. J. Pharmacol. 2319–2334 (2016)
3.
Zurück zum Zitat Copeland, R.A., Pompliano, D.L., Meek, T.D.: Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discovery 5, 730–739 (2006)CrossRefPubMed Copeland, R.A., Pompliano, D.L., Meek, T.D.: Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discovery 5, 730–739 (2006)CrossRefPubMed
5.
Zurück zum Zitat Wang, Y., Ribeiro, J.M.L., Tiwary, P.: Machine learning approaches for an analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol. 61, 139–145 (2020)CrossRefPubMed Wang, Y., Ribeiro, J.M.L., Tiwary, P.: Machine learning approaches for an analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol. 61, 139–145 (2020)CrossRefPubMed
6.
Zurück zum Zitat Dhakal, A., McKay, C., Tanner, J.J., Cheng, J.: Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future direction (2022) Dhakal, A., McKay, C., Tanner, J.J., Cheng, J.: Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future direction (2022)
7.
Zurück zum Zitat Qu, S., Huang, S., Pan, X., Yang, L., Mei, H.: Constructing interconsistent, reasonable, and predictive models for both the kinetic and thermodynamic properties of HIV-1 protease inhibitors. J. Chem. Inf. Model. 56, 2061–2068 (2016)CrossRefPubMed Qu, S., Huang, S., Pan, X., Yang, L., Mei, H.: Constructing interconsistent, reasonable, and predictive models for both the kinetic and thermodynamic properties of HIV-1 protease inhibitors. J. Chem. Inf. Model. 56, 2061–2068 (2016)CrossRefPubMed
8.
Zurück zum Zitat Ganotra, G.K., Wade, R.C.: Prediction of drug-target binding kinetics by comparative binding energy analysis. ACS Med. Chem. Lett. 9, 1134–1139 (2018)CrossRefPubMedPubMedCentral Ganotra, G.K., Wade, R.C.: Prediction of drug-target binding kinetics by comparative binding energy analysis. ACS Med. Chem. Lett. 9, 1134–1139 (2018)CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Su, M., Liu, H., Lin, H., Wang, R.: Machine-learning model for predicting the rate constant of protein-ligand dissociation. Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica 3 (2020) Su, M., Liu, H., Lin, H., Wang, R.: Machine-learning model for predicting the rate constant of protein-ligand dissociation. Wuli Huaxue Xuebao/Acta Physico-Chimica Sinica 3 (2020)
10.
Zurück zum Zitat Amangeldiuly, N., Karlov, D., Fedorov, M.V.: Baseline model for predicting protein-ligand unbinding kinetics through machine learning. J. Chem. Inf. Model. 60, 5946–5956 (2020)CrossRefPubMed Amangeldiuly, N., Karlov, D., Fedorov, M.V.: Baseline model for predicting protein-ligand unbinding kinetics through machine learning. J. Chem. Inf. Model. 60, 5946–5956 (2020)CrossRefPubMed
11.
Zurück zum Zitat Badaoui, M., et al.: Combined free-energy calculation and machine learning methods for understanding ligand unbinding kinetics. J. Chem. Theory Comput. 18, 2543–2555 (2022)CrossRefPubMedPubMedCentral Badaoui, M., et al.: Combined free-energy calculation and machine learning methods for understanding ligand unbinding kinetics. J. Chem. Theory Comput. 18, 2543–2555 (2022)CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Bray, S., Tanzel, V., Wolf, S.: Ligand unbinding pathway and mechanism analysis assisted by machine learning and graph methods (2022) Bray, S., Tanzel, V., Wolf, S.: Ligand unbinding pathway and mechanism analysis assisted by machine learning and graph methods (2022)
13.
Zurück zum Zitat Gabdoulline, R.R., Wade, R.C.: On the protein-protein diffusional encounter complex (1999) Gabdoulline, R.R., Wade, R.C.: On the protein-protein diffusional encounter complex (1999)
14.
Zurück zum Zitat Gabdoulline, R.R., Wade, R.C.: Biomolecular diffusional association Gabdoulline and Wade 205 (2022) Gabdoulline, R.R., Wade, R.C.: Biomolecular diffusional association Gabdoulline and Wade 205 (2022)
15.
Zurück zum Zitat Prasad, M.S., Bhole, R.P., Khedekar, P.B., Chikhale, R.V.: Mycobacterium enoyl acyl carrier protein reductase (InhA): a key target for antitubercular drug discovery. Bioorg. Chem. 115, 105242 (2021)CrossRefPubMed Prasad, M.S., Bhole, R.P., Khedekar, P.B., Chikhale, R.V.: Mycobacterium enoyl acyl carrier protein reductase (InhA): a key target for antitubercular drug discovery. Bioorg. Chem. 115, 105242 (2021)CrossRefPubMed
16.
Zurück zum Zitat Bajusz, D., Racz, A., Heberger, K.: Why is tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminformatics 7, 1–13 (2015)CrossRef Bajusz, D., Racz, A., Heberger, K.: Why is tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminformatics 7, 1–13 (2015)CrossRef
17.
Zurück zum Zitat Kokh, D.B., et al.: Estimation of drug-target residence times by \(\tau \)-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 14, 3859–3869 (2018)CrossRefPubMed Kokh, D.B., et al.: Estimation of drug-target residence times by \(\tau \)-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 14, 3859–3869 (2018)CrossRefPubMed
Metadaten
Titel
Identification of InhA-Inhibitors Interaction Fingerprints that Affect Residence Time
verfasst von
Magdalena Ługowska
Marcin Pacholczyk
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34953-9_2

Premium Partner