Skip to main content
Erschienen in: Computing 8/2019

19.09.2018

Identifying influential spreaders based on edge ratio and neighborhood diversity measures in complex networks

verfasst von: Negin Samadi, Asgarali Bouyer

Erschienen in: Computing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, notable number of research studies have been conducted on the analysis of diffusion process in complex networks. One fundamental problem in this domain is to find the most influential spreader nodes. For achieving a successful spreading process, nodes having high spreading ability should be selected as spreaders. Many centrality measures have been proposed for determining and ranking the significance of nodes and detecting the best spreaders. The majority of proposed centrality measures require network global information which leads to high time complexity. Moreover, with the advent of large-scale complex networks, there is a critical need for improving accurate measures through using nodes’ local information. On the other hand, most of the formerly proposed centrality measures have attempted to select core nodes as spreaders but global bridge nodes have the highest spreading ability since they are located among several giant communities of the network. In this study, a new local and parameter-free centrality measure is proposed which is aimed at finding global bridge nodes in the network. Hence, two new local metrics, namely edge ratio and neighborhood diversity, are firstly defined which are used in the proposed method. Considering edge ratio of neighbors ensures that the selected node be not in the periphery location of the network. Furthermore, a node with high neighborhood diversity is likely a connector between some modules (dense parts) of the network. Therefore, a node with a high edge ratio and more diverse neighborhood has high spreading ability. The major merits of the proposed measure are near-linear time complexity, using local information and being parameter-free. For evaluating the proposed method, we conducted experiments on real-world networks. The results of comparing the proposed centrality measure with other measures in terms of epidemic models (SIR and SI), Kendall’s tau correlation coefficient and Rank-Frequency measures indicated that the proposed method outperforms the other compared centrality measures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Havlin S et al (2012) Challenges in network science: applications to infrastructures, climate, social systems and economics. Eur Phys J Spec Topics 214(1):273–293 Havlin S et al (2012) Challenges in network science: applications to infrastructures, climate, social systems and economics. Eur Phys J Spec Topics 214(1):273–293
2.
Zurück zum Zitat Jia-sheng W et al (2011) Improved method of node importance evaluation based on node contraction in complex networks. Proc Eng 15:1600–1604 Jia-sheng W et al (2011) Improved method of node importance evaluation based on node contraction in complex networks. Proc Eng 15:1600–1604
3.
Zurück zum Zitat Lü L et al (2016) Vital nodes identification in complex networks. Phys Rep 650:1–63MathSciNet Lü L et al (2016) Vital nodes identification in complex networks. Phys Rep 650:1–63MathSciNet
4.
5.
Zurück zum Zitat Berahmand K, Bouyer A, Samadi N (2018) A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks. Chaos, Solitons Fractals 110:41–54MATH Berahmand K, Bouyer A, Samadi N (2018) A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks. Chaos, Solitons Fractals 110:41–54MATH
6.
Zurück zum Zitat Pei S, Makse HA (2013) Spreading dynamics in complex networks. J Stat Mech: Theory Exp 2013(12):P12002 Pei S, Makse HA (2013) Spreading dynamics in complex networks. J Stat Mech: Theory Exp 2013(12):P12002
7.
Zurück zum Zitat Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47MathSciNetMATH Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47MathSciNetMATH
8.
Zurück zum Zitat Zhang Z-K et al (2016) Dynamics of information diffusion and its applications on complex networks. Phys Rep 651:1–34MathSciNet Zhang Z-K et al (2016) Dynamics of information diffusion and its applications on complex networks. Phys Rep 651:1–34MathSciNet
9.
10.
Zurück zum Zitat Sheikhahmadi A, Nematbakhsh MA, Shokrollahi A (2015) Improving detection of influential nodes in complex networks. Phys A 436:833–845 Sheikhahmadi A, Nematbakhsh MA, Shokrollahi A (2015) Improving detection of influential nodes in complex networks. Phys A 436:833–845
11.
Zurück zum Zitat Hinz O, Schulze C, Takac C (2014) New product adoption in social networks: why direction matters. J Bus Res 67(1):2836–2844 Hinz O, Schulze C, Takac C (2014) New product adoption in social networks: why direction matters. J Bus Res 67(1):2836–2844
12.
Zurück zum Zitat Probst F, Grosswiele L, Pfleger R (2013) Who will lead and who will follow: identifying influential users in online social networks. Bus Inf Syst Eng 5(3):179–193 Probst F, Grosswiele L, Pfleger R (2013) Who will lead and who will follow: identifying influential users in online social networks. Bus Inf Syst Eng 5(3):179–193
13.
Zurück zum Zitat Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81(2):591 Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81(2):591
14.
Zurück zum Zitat Pei S et al (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547 Pei S et al (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547
15.
Zurück zum Zitat Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw TON 17(1):1–14 Van Mieghem P, Omic J, Kooij R (2009) Virus spread in networks. IEEE/ACM Trans Netw TON 17(1):1–14
16.
Zurück zum Zitat Kostka J, Oswald YA, Wattenhofer R (2008) Word of mouth: Rumor dissemination in social networks. In: International colloquium on structural information and communication complexity. Springer Kostka J, Oswald YA, Wattenhofer R (2008) Word of mouth: Rumor dissemination in social networks. In: International colloquium on structural information and communication complexity. Springer
17.
Zurück zum Zitat Nowzari C, Preciado VM, Pappas GJ (2016) Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst 36(1):26–46MathSciNet Nowzari C, Preciado VM, Pappas GJ (2016) Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst 36(1):26–46MathSciNet
18.
Zurück zum Zitat Iyengar R, Van den Bulte C, Valente TW (2011) Opinion leadership and social contagion in new product diffusion. Market Sci 30(2):195–212 Iyengar R, Van den Bulte C, Valente TW (2011) Opinion leadership and social contagion in new product diffusion. Market Sci 30(2):195–212
19.
Zurück zum Zitat Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. ICWSM 10:90–97 Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. ICWSM 10:90–97
20.
Zurück zum Zitat Chin C-H et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):S11 Chin C-H et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):S11
21.
Zurück zum Zitat Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247 Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247
22.
Zurück zum Zitat Meo PD et al (2017) Using centrality measures to predict helpfulness-based reputation in trust networks. ACM Trans Internet Technol 17(1):8 Meo PD et al (2017) Using centrality measures to predict helpfulness-based reputation in trust networks. ACM Trans Internet Technol 17(1):8
23.
Zurück zum Zitat Hutter C, Lorch R, Bohm K (2011) Evolving cooperation through reciprocity using a centrality-based reputation system. In: 2011 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT). IEEE Hutter C, Lorch R, Bohm K (2011) Evolving cooperation through reciprocity using a centrality-based reputation system. In: 2011 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT). IEEE
24.
Zurück zum Zitat Gao S et al (2014) Ranking the spreading ability of nodes in complex networks based on local structure. Phys A 403:130–147MATH Gao S et al (2014) Ranking the spreading ability of nodes in complex networks based on local structure. Phys A 403:130–147MATH
25.
Zurück zum Zitat Guimera R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech: Theory Exp 2005(02):P02001MATH Guimera R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech: Theory Exp 2005(02):P02001MATH
26.
Zurück zum Zitat Habiba H, Berger-Wolf T (2011) Working for influence: effect of network density and modularity on diffusion in networks. In: 2011 IEEE 11th international conference on data mining workshops (ICDMW). IEEE Habiba H, Berger-Wolf T (2011) Working for influence: effect of network density and modularity on diffusion in networks. In: 2011 IEEE 11th international conference on data mining workshops (ICDMW). IEEE
27.
Zurück zum Zitat Chen D et al (2012) Identifying influential nodes in complex networks. Phys A 391(4):1777–1787 Chen D et al (2012) Identifying influential nodes in complex networks. Phys A 391(4):1777–1787
28.
Zurück zum Zitat Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239 Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239
29.
Zurück zum Zitat Liu Y et al (2016) Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons Fractals 86:1–7MathSciNetMATH Liu Y et al (2016) Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons Fractals 86:1–7MathSciNetMATH
30.
Zurück zum Zitat Liu J et al (2016) Evaluating the importance of nodes in complex networks. Phys A 452:209–219 Liu J et al (2016) Evaluating the importance of nodes in complex networks. Phys A 452:209–219
31.
Zurück zum Zitat Hajian B, White T (2011) Modelling influence in a social network: metrics and evaluation. In: 2011 IEEE third international conference on privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE Hajian B, White T (2011) Modelling influence in a social network: metrics and evaluation. In: 2011 IEEE third international conference on privacy, security, risk and trust (PASSAT) and 2011 IEEE third international conference on social computing (SocialCom). IEEE
32.
Zurück zum Zitat Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41 Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41
33.
Zurück zum Zitat Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54 Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54
34.
Zurück zum Zitat Koschützki D et al (2005) Centrality indices. In: Brandes U, Erlebach T (eds) Network analysis. Springer, BerlinMATH Koschützki D et al (2005) Centrality indices. In: Brandes U, Erlebach T (eds) Network analysis. Springer, BerlinMATH
35.
Zurück zum Zitat Kitsak M et al (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893 Kitsak M et al (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893
36.
Zurück zum Zitat Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44MathSciNet Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44MathSciNet
37.
Zurück zum Zitat Burt RS (2009) Structural holes: the social structure of competition. Harvard University Press, Cambridge Burt RS (2009) Structural holes: the social structure of competition. Harvard University Press, Cambridge
38.
Zurück zum Zitat Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579 Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579
39.
Zurück zum Zitat Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50 Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50
40.
Zurück zum Zitat Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6(04):565–573 Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6(04):565–573
41.
Zurück zum Zitat Guimera R et al (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103 Guimera R et al (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103
43.
Zurück zum Zitat Xie N (2006) Social network analysis of blogs. M.Sc. Dissertation, University of Bristol Xie N (2006) Social network analysis of blogs. M.Sc. Dissertation, University of Bristol
44.
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440MATH Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440MATH
45.
Zurück zum Zitat Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data (TKDD) 1(1):2 Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data (TKDD) 1(1):2
46.
Zurück zum Zitat Boguñá M et al (2004) Models of social networks based on social distance attachment. Phys Rev E 70(5):056122MathSciNet Boguñá M et al (2004) Models of social networks based on social distance attachment. Phys Rev E 70(5):056122MathSciNet
47.
Zurück zum Zitat Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701 Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701
48.
Zurück zum Zitat Hu H-B, Wang X-F (2008) Unified index to quantifying heterogeneity of complex networks. Phys A 387(14):3769–3780 Hu H-B, Wang X-F (2008) Unified index to quantifying heterogeneity of complex networks. Phys A 387(14):3769–3780
49.
Zurück zum Zitat Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275 Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275
50.
51.
Zurück zum Zitat Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in networks. Phys Rev Lett 105(21):218701 Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in networks. Phys Rev Lett 105(21):218701
52.
Zurück zum Zitat Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93MATH Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93MATH
53.
Zurück zum Zitat Liu J-G, Ren Z-M, Guo Q (2013) Ranking the spreading influence in complex networks. Phys A 392(18):4154–4159 Liu J-G, Ren Z-M, Guo Q (2013) Ranking the spreading influence in complex networks. Phys A 392(18):4154–4159
Metadaten
Titel
Identifying influential spreaders based on edge ratio and neighborhood diversity measures in complex networks
verfasst von
Negin Samadi
Asgarali Bouyer
Publikationsdatum
19.09.2018
Verlag
Springer Vienna
Erschienen in
Computing / Ausgabe 8/2019
Print ISSN: 0010-485X
Elektronische ISSN: 1436-5057
DOI
https://doi.org/10.1007/s00607-018-0659-9

Weitere Artikel der Ausgabe 8/2019

Computing 8/2019 Zur Ausgabe

Premium Partner