Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 4/2023

01.12.2023 | SCIENTIFIC SCHOOLS OF THE LOMONOSOV MOSCOW STATE UNIVERSITY (MSU), MOSCOW, THE RUSSIAN FEDERATION

Image Analysis and Enhancement: General Methods and Biomedical Applications

verfasst von: A. S. Krylov, A. V. Nasonov, D. V. Sorokin, A. V. Khvostikov, E. A. Pavelyeva, Ya. A. Pchelintsev

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

General methods of image processing, analysis and enhancement and their biomedical applications developed by the scientific school of the Laboratory of Mathematical Methods of Image Processing of the Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University are reviewed. The suggested general methods and algorithms of image quality enhancement for image resampling and super-resolution, ringing artifact reduction, image sharpening, image denoising, and image registration are described. Image analysis methods based on Hermite projection method, Gauss-Laguerre functions and the use of phase information are presented. We describe and review the developed methods for medical imaging tasks solution, including problems in histology, color Doppler flow mapping, ultrasound liver fibrosis diagnostics, CT brain perfusion, Alzheimer’s disease diagnostics, dermatology, chest X-ray image analysis, live cell image registration, tracking, segmentation and synthesis. The paper illustrates the basic research idea of the effectiveness of the hybrid approach when we jointly use classical mathematical methods and deep learning approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, “Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning,” in 2018 IEEE 31st Int. Symp. on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018 (IEEE, 2018), pp. 345–350. https://doi.org/https://doi.org/10.1109/cbms.2018.00067 K. Aderghal, A. Khvostikov, A. Krylov, J. Benois-Pineau, K. Afdel, and G. Catheline, “Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning,” in 2018 IEEE 31st Int. Symp. on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018 (IEEE, 2018), pp. 345–350. https://doi.org/https://​doi.​org/​10.​1109/​cbms.​2018.​00067
2.
Zurück zum Zitat N. A. Anoshina, A. S. Krylov, and D. V. Sorokin, “Correlation-based 2D registration method for single particle cryo-EM images,” in 2017 Seventh Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Montreal, 2017 (IEEE, 2017), pp. 1–6. https://doi.org/10.1109/ipta.2017.8310125 N. A. Anoshina, A. S. Krylov, and D. V. Sorokin, “Correlation-based 2D registration method for single particle cryo-EM images,” in 2017 Seventh Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Montreal, 2017 (IEEE, 2017), pp. 1–6. https://​doi.​org/​10.​1109/​ipta.​2017.​8310125
4.
Zurück zum Zitat N. A. Anoshina and D. V. Sorokin, “Weak supervision using cell tracking annotation and image registration improves cell segmentation,” in 2022 Eleventh Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Salzburg, Austria, 2022 (IEEE, 2022), pp. 1–5. https://doi.org/10.1109/ipta54936.2022.9784140 N. A. Anoshina and D. V. Sorokin, “Weak supervision using cell tracking annotation and image registration improves cell segmentation,” in 2022 Eleventh Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Salzburg, Austria, 2022 (IEEE, 2022), pp. 1–5. https://​doi.​org/​10.​1109/​ipta54936.​2022.​9784140
7.
Zurück zum Zitat J. Borovec, J. Kybic, I. Arganda-Carreras, D. V. Sorokin, G. Bueno, A. V. Khvostikov, S. Bakas, E. I. Chang, S. Heldmann, K. Kartasalo, L. Latonen, J. Lotz, M. Noga, S. Pati, K. Punithakumar, P. Ruusuvuori, A. Skalski, N. Tahmasebi, M. Valkonen, L. Venet, Yi. Wang, N. Weiss, M. Wodzinski, Yu. Xiang, Ya. Xu, Ya. Yan, P. Yushkevich, S. Zhao, and A. Munoz-Barrutia, “ANHIR: Automatic non-rigid histological image registration challenge,” IEEE Trans. Med. Imaging 39, 3042–3052 (2020). https://doi.org/10.1109/tmi.2020.2986331CrossRefPubMedPubMedCentral J. Borovec, J. Kybic, I. Arganda-Carreras, D. V. Sorokin, G. Bueno, A. V. Khvostikov, S. Bakas, E. I. Chang, S. Heldmann, K. Kartasalo, L. Latonen, J. Lotz, M. Noga, S. Pati, K. Punithakumar, P. Ruusuvuori, A. Skalski, N. Tahmasebi, M. Valkonen, L. Venet, Yi. Wang, N. Weiss, M. Wodzinski, Yu. Xiang, Ya. Xu, Ya. Yan, P. Yushkevich, S. Zhao, and A. Munoz-Barrutia, “ANHIR: Automatic non-rigid histological image registration challenge,” IEEE Trans. Med. Imaging 39, 3042–3052 (2020). https://​doi.​org/​10.​1109/​tmi.​2020.​2986331CrossRefPubMedPubMedCentral
12.
15.
Zurück zum Zitat A. Dogvanich, N. Mamaev, A. Krylov, and N. Makhneva, “Dermatological image denoising using adaptive henlm method,” ISPRS J. Photogrammetry Remote Sensing 42 (2/W12), 47–52 (2019). A. Dogvanich, N. Mamaev, A. Krylov, and N. Makhneva, “Dermatological image denoising using adaptive henlm method,” ISPRS J. Photogrammetry Remote Sensing 42 (2/W12), 47–52 (2019).
16.
Zurück zum Zitat A. A. Dovganich, A. V. Nasonov, A. S. Krylov, and N. V. Makhneva, “Ridge-based method for pemphigus diagnosis on immunofluorescence images,” in Proc. 26th Int. Conf. on Computer Graphics and Vision GraphiCon-2016, Nizhny Novgorod, 2016 (Inst. Fiz.-Tekh. Informatiki, Protvino, Moscow oblast, 2016), pp. 170–174. A. A. Dovganich, A. V. Nasonov, A. S. Krylov, and N. V. Makhneva, “Ridge-based method for pemphigus diagnosis on immunofluorescence images,” in Proc. 26th Int. Conf. on Computer Graphics and Vision GraphiCon-2016, Nizhny Novgorod, 2016 (Inst. Fiz.-Tekh. Informatiki, Protvino, Moscow oblast, 2016), pp. 170–174.
21.
Zurück zum Zitat V. E. Karnaukhov, A. S. Krylov, Yo. Ding, and M. C. Q. Farias, “Hybrid method for biomedical image poisson denoising,” in Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, New York, 2020), pp. 32–36. https://doi.org/10.1145/3417519.3417553 V. E. Karnaukhov, A. S. Krylov, Yo. Ding, and M. C. Q. Farias, “Hybrid method for biomedical image poisson denoising,” in Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, New York, 2020), pp. 32–36. https://​doi.​org/​10.​1145/​3417519.​3417553
25.
Zurück zum Zitat A. Khvostikov, A. Krylov, J. Kamalov, and A. Megroyan, “Influence of ultrasound despeckling on the liver fibrosis classification,” in 2015 Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 2015 (IEEE, 2015), pp. 440–445. https://doi.org/10.1109/ipta.2015.7367183 A. Khvostikov, A. Krylov, J. Kamalov, and A. Megroyan, “Influence of ultrasound despeckling on the liver fibrosis classification,” in 2015 Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 2015 (IEEE, 2015), pp. 440–445. https://​doi.​org/​10.​1109/​ipta.​2015.​7367183
29.
Zurück zum Zitat A. Khvostikov, A. S. Krylov, I. Mikhailov, and P. Malkov, “CNN assisted hybrid algorithm for medical images segmentation,” in Proc. 2020 5th Int. Conf. on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, New York, 2020), pp. 14–19. https://doi.org/10.1145/3417519.3417557 A. Khvostikov, A. S. Krylov, I. Mikhailov, and P. Malkov, “CNN assisted hybrid algorithm for medical images segmentation,” in Proc. 2020 5th Int. Conf. on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, New York, 2020), pp. 14–19. https://​doi.​org/​10.​1145/​3417519.​3417557
31.
Zurück zum Zitat A. Yu. Kondratiev, H. Yaginuma, Ya. Okada, and D. V. Sorokin, “A method for automatic tracking of cell nuclei in 2D epifluorescence microscopy image sequences,” in 2018 Eighth Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Xi’an, China, 2018 (IEEE, 2018), pp. 1–6. https://doi.org/10.1109/ipta.2018.8608156 A. Yu. Kondratiev, H. Yaginuma, Ya. Okada, and D. V. Sorokin, “A method for automatic tracking of cell nuclei in 2D epifluorescence microscopy image sequences,” in 2018 Eighth Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Xi’an, China, 2018 (IEEE, 2018), pp. 1–6. https://​doi.​org/​10.​1109/​ipta.​2018.​8608156
32.
Zurück zum Zitat A. Yu. Kondratiev, H. Yaginuma, Ya. Okada, A. S. Krylov, and D. V. Sorokin, “A method for automatic tracking of cell nuclei with weakly-supervised mitosis detection in 2D microscopy image sequences,” in Proc. 2020 5th Int. Conf. on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, 2020), pp. 67–73. https://doi.org/10.1145/3417519.3417558 A. Yu. Kondratiev, H. Yaginuma, Ya. Okada, A. S. Krylov, and D. V. Sorokin, “A method for automatic tracking of cell nuclei with weakly-supervised mitosis detection in 2D microscopy image sequences,” in Proc. 2020 5th Int. Conf. on Biomedical Signal and Image Processing, Suzhou, China, 2020 (Association for Computing Machinery, 2020), pp. 67–73. https://​doi.​org/​10.​1145/​3417519.​3417558
33.
Zurück zum Zitat A. Yu. Kondrat’ev and D. V. Sorokin, “Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints,” in 2016 23rd Int. Conf. on Pattern Recognition (ICPR), Cancun, Mexico, 2016 (IEEE, 2016), pp. 326–331. https://doi.org/10.1109/icpr.2016.7899655 A. Yu. Kondrat’ev and D. V. Sorokin, “Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints,” in 2016 23rd Int. Conf. on Pattern Recognition (ICPR), Cancun, Mexico, 2016 (IEEE, 2016), pp. 326–331. https://​doi.​org/​10.​1109/​icpr.​2016.​7899655
35.
Zurück zum Zitat D. Kortchagine and A. Krylov, “Image database retrieval by fast Hermite projection method,” in Proc. 15th Int. Conf. on Computer Graphics and Vision GraphiCon-2005 (Novosibirsk, 2005), pp. 137–140. D. Kortchagine and A. Krylov, “Image database retrieval by fast Hermite projection method,” in Proc. 15th Int. Conf. on Computer Graphics and Vision GraphiCon-2005 (Novosibirsk, 2005), pp. 137–140.
36.
Zurück zum Zitat A. Krylov, F. Guryanov, N. Mamaev, and D. Yurin, “Fast estimation of downsampling factor for biomedical image registration,” in Proc. 2018 3rd Int. Conf. on Biomedical Imaging, Signal Processing, Bari, Italy, 2018 (Association for Computing Machinery, New York, 2018), pp. 36–40. https://doi.org/10.1145/3288200.3288203 A. Krylov, F. Guryanov, N. Mamaev, and D. Yurin, “Fast estimation of downsampling factor for biomedical image registration,” in Proc. 2018 3rd Int. Conf. on Biomedical Imaging, Signal Processing, Bari, Italy, 2018 (Association for Computing Machinery, New York, 2018), pp. 36–40. https://​doi.​org/​10.​1145/​3288200.​3288203
37.
Zurück zum Zitat A. Krylov, V. Karnaukhov, N. Mamaev, and A. Khvos-tikov, “Hybrid method for biomedical image denoising,” in Proc. 2019 4th Int. Conf. on Biomedical Imaging, Signal Processing, Nagoya, Japan, 2019 (Association for Computing Machinery, New York, 2019), pp. 60–64. https://doi.org/10.1145/3366174.3366184 A. Krylov, V. Karnaukhov, N. Mamaev, and A. Khvos-tikov, “Hybrid method for biomedical image denoising,” in Proc. 2019 4th Int. Conf. on Biomedical Imaging, Signal Processing, Nagoya, Japan, 2019 (Association for Computing Machinery, New York, 2019), pp. 60–64. https://​doi.​org/​10.​1145/​3366174.​3366184
39.
Zurück zum Zitat D. N. Kortchagine and A. S. Krylov, “Projection filtering in image processing,” in Proc. 10th Int. Conf. on Computer Graphics and Vision GraphiCon-2000 (Moscow, 2000), pp. 42–45. D. N. Kortchagine and A. S. Krylov, “Projection filtering in image processing,” in Proc. 10th Int. Conf. on Computer Graphics and Vision GraphiCon-2000 (Moscow, 2000), pp. 42–45.
40.
Zurück zum Zitat A. S. Krylov, A. V. Kutovoi, and K. L. Wee, “Texture parameterization with Hermite functions,” in Proc. 12th Int. Conf. on Computer Graphics and Vision GraphiCon-2002 (Nizhny Novgorod, 2002), pp. 190–194. A. S. Krylov, A. V. Kutovoi, and K. L. Wee, “Texture parameterization with Hermite functions,” in Proc. 12th Int. Conf. on Computer Graphics and Vision GraphiCon-2002 (Nizhny Novgorod, 2002), pp. 190–194.
44.
46.
Zurück zum Zitat A. Krylov, A. Nasonov, K. Chesnakov, A. Nasonova, S. O. Jin, U. Kang, and S. M. Park, “Vessel preserving CNN-based image resampling of retinal images,” in Image Analysis and Recognition. ICIAR 2018, Ed. by A. Campilho, F. Karray, and B. ter Haar Romeny, Lecture Notes in Computer Science, Vol. 10882 (Springer, Cham, 2018), pp. 589–597. https://doi.org/10.1007/978-3-319-93000-8_67CrossRef A. Krylov, A. Nasonov, K. Chesnakov, A. Nasonova, S. O. Jin, U. Kang, and S. M. Park, “Vessel preserving CNN-based image resampling of retinal images,” in Image Analysis and Recognition. ICIAR 2018, Ed. by A. Campilho, F. Karray, and B. ter Haar Romeny, Lecture Notes in Computer Science, Vol. 10882 (Springer, Cham, 2018), pp. 589–597. https://​doi.​org/​10.​1007/​978-3-319-93000-8_​67CrossRef
47.
49.
Zurück zum Zitat A. S. Krylov, A. V. Nasonov, and D. V. Sorokin, “Face image super-resolution from video data with nonuniform illumination,” in 18th Int. Conf. on Computer Graphics GraphiCon-2008 (2008), pp. 150–155. A. S. Krylov, A. V. Nasonov, and D. V. Sorokin, “Face image super-resolution from video data with nonuniform illumination,” in 18th Int. Conf. on Computer Graphics GraphiCon-2008 (2008), pp. 150–155.
50.
Zurück zum Zitat A. S. Krylov, A. S. Nasonov, and O. S. Ushmaev, “Image super-resolution using fast deconvolution,” in Proc. 9th Conf. on Pattern Recognition and Image Analysis: New Information Technologies (2008), Vol. 1, pp. 362–364. A. S. Krylov, A. S. Nasonov, and O. S. Ushmaev, “Image super-resolution using fast deconvolution,” in Proc. 9th Conf. on Pattern Recognition and Image Analysis: New Information Technologies (2008), Vol. 1, pp. 362–364.
52.
Zurück zum Zitat A. Krylov, M. Penkin, N. Mamaev, and A. Khvostikov, “How to choose adaptively parameters of image denoising methods,” in 2019 Ninth Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Istanbul, 2019 (IEEE, 2019), pp. 1–6. https://doi.org/10.1109/IPTA.2019.8936109 A. Krylov, M. Penkin, N. Mamaev, and A. Khvostikov, “How to choose adaptively parameters of image denoising methods,” in 2019 Ninth Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Istanbul, 2019 (IEEE, 2019), pp. 1–6. https://​doi.​org/​10.​1109/​IPTA.​2019.​8936109
54.
Zurück zum Zitat A. S. Krylov, D. V. Sorokin, D. V. Yurin, and E. V. Semeikina, “Use of color information for keypoints detection and descriptors construction,” in Intelligent Science and Intelligent Data Engineering, Lecture Notes in Computer Science, Vol. 7202 (Springer, Berlin, 2012), pp. 389–396. https://doi.org/10.1007/978-3-642-31919-8_50CrossRef A. S. Krylov, D. V. Sorokin, D. V. Yurin, and E. V. Semeikina, “Use of color information for keypoints detection and descriptors construction,” in Intelligent Science and Intelligent Data Engineering, Lecture Notes in Computer Science, Vol. 7202 (Springer, Berlin, 2012), pp. 389–396. https://​doi.​org/​10.​1007/​978-3-642-31919-8_​50CrossRef
56.
Zurück zum Zitat A. Lukin, A. Krylov, and A. Nasonov, “Image interpolation by super-resolution,” in Proc. 16th Int. Conf. GraphiCon-2006 (2006), pp. 239–242. A. Lukin, A. Krylov, and A. Nasonov, “Image interpolation by super-resolution,” in Proc. 16th Int. Conf. GraphiCon-2006 (2006), pp. 239–242.
60.
Zurück zum Zitat N. Mamaev, A. Krylov, and D. Yurin, “Choice of the regularization parameter for total variation image denoising using no-reference metric,” in Proc. Int. Conf. Interfaces and Human Computer Interaction 2018; Game and Entertainment Technologies 2018; and Computer Graphics, Visualization, Computer Vision and Image Processing, Ed. by K. Blashki and Yi. Xiao (IADIS Press, 2018), pp. 253–260. https://doi.org/10.33965/cgv2019 N. Mamaev, A. Krylov, and D. Yurin, “Choice of the regularization parameter for total variation image denoising using no-reference metric,” in Proc. Int. Conf. Interfaces and Human Computer Interaction 2018; Game and Entertainment Technologies 2018; and Computer Graphics, Visualization, Computer Vision and Image Processing, Ed. by K. Blashki and Yi. Xiao (IADIS Press, 2018), pp. 253–260. https://​doi.​org/​10.​33965/​cgv2019
63.
Zurück zum Zitat N. Mamaev, D. Yurin, and A. Krylov, “Image ridge denoising using no-reference metric,” in Advanced Concepts for Intelligent Vision Systems. ACIVS 2017, Ed. by J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, 2017, Vol. 10617, pp. 591–601. https://doi.org/10.1007/978-3-319-703534_50 N. Mamaev, D. Yurin, and A. Krylov, “Image ridge denoising using no-reference metric,” in Advanced Concepts for Intelligent Vision Systems. ACIVS 2017, Ed. by J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, 2017, Vol. 10617, pp. 591–601. https://​doi.​org/​10.​1007/​978-3-319-703534_​50
64.
66.
Zurück zum Zitat M. Maå¡ka, T. Necasova, D. Wiesner, D. V. Sorokin, I. Peterlãk, V. Ulman, and D. Svoboda, “Toward robust fully 3D filopodium segmentation and tracking in time-lapse fluorescence microscopy,” in 2019 IEEE Int. Conf. on Image Processing, Taipei, 2019 (IEEE, 2019), pp. 819–823. https://doi.org/10.1109/ICIP.2019.8803721 M. Maå¡ka, T. Necasova, D. Wiesner, D. V. Sorokin, I. Peterlãk, V. Ulman, and D. Svoboda, “Toward robust fully 3D filopodium segmentation and tracking in time-lapse fluorescence microscopy,” in 2019 IEEE Int. Conf. on Image Processing, Taipei, 2019 (IEEE, 2019), pp. 819–823. https://​doi.​org/​10.​1109/​ICIP.​2019.​8803721
67.
Zurück zum Zitat M. Najafi, A. Krylov, and D. Kortchagine, “Image deblocking with 2-D Hermite transform,” in Proceedings of the 13th Int. Conf. on Computer Graphics and Vision GraphiCon-2003 (Moscow, 2003), pp. 180–183. M. Najafi, A. Krylov, and D. Kortchagine, “Image deblocking with 2-D Hermite transform,” in Proceedings of the 13th Int. Conf. on Computer Graphics and Vision GraphiCon-2003 (Moscow, 2003), pp. 180–183.
68.
70.
Zurück zum Zitat A. V. Nasonov and A. S. Krylov, “Adaptive image deringing,” in Proceedings of the 19th Int. Conf. on Computer Graphics and Vision GraphiCon-2009 (Moscow, 2009), pp. 151–154. A. V. Nasonov and A. S. Krylov, “Adaptive image deringing,” in Proceedings of the 19th Int. Conf. on Computer Graphics and Vision GraphiCon-2009 (Moscow, 2009), pp. 151–154.
72.
Zurück zum Zitat A. V. Nasonov and A. S. Krylov, “Basic edges metrics for image deblurring,” in Proceedings of the 10th Conference on Pattern Recognition and Image Analysis: New Information Technologies 1, 243–246 (2010). A. V. Nasonov and A. S. Krylov, “Basic edges metrics for image deblurring,” in Proceedings of the 10th Conference on Pattern Recognition and Image Analysis: New Information Technologies 1, 243–246 (2010).
74.
77.
Zurück zum Zitat A. Nasonov, A. Krylov, and A. Lukin, “Post-processing by total variation quasi-solution method for image interpolation,” in Proc. 17th Int. Conf. on Computer Graphics GraphiCon-2007 (2007), pp. 178–181. A. Nasonov, A. Krylov, and A. Lukin, “Post-processing by total variation quasi-solution method for image interpolation,” in Proc. 17th Int. Conf. on Computer Graphics GraphiCon-2007 (2007), pp. 178–181.
81.
Zurück zum Zitat A. Nasonov, A. Nasonova, and A. Krylov, “Edge width estimation for defocus map from a single image,” in Advanced Concepts for Intelligent Vision Systems, Ed. by S. Battiato, J. Blanc-Talon, G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, Vol. 9386 (Springer, Cham, 2015), pp. 15–22. https://doi.org/10.1007/978-3-319-25903-1_2CrossRef A. Nasonov, A. Nasonova, and A. Krylov, “Edge width estimation for defocus map from a single image,” in Advanced Concepts for Intelligent Vision Systems, Ed. by S. Battiato, J. Blanc-Talon, G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, Vol. 9386 (Springer, Cham, 2015), pp. 15–22. https://​doi.​org/​10.​1007/​978-3-319-25903-1_​2CrossRef
85.
Zurück zum Zitat A. Nasonova, A. Nasonov, A. Krylov, I. Pechenko, A. Umnov, and N. Makhneva, “Image warping in dermatological image hair removal,” in Image Analysis and Recognition. ICIAR 2014, Ed. by A. Campilho and M. Kamel, Lecture Notes in Computer Science, Vol. 8815 (Springer, Cham, 2014), pp. 159–166. https://doi.org/10.1007/978-3-319-11755-3_18CrossRef A. Nasonova, A. Nasonov, A. Krylov, I. Pechenko, A. Umnov, and N. Makhneva, “Image warping in dermatological image hair removal,” in Image Analysis and Recognition. ICIAR 2014, Ed. by A. Campilho and M. Kamel, Lecture Notes in Computer Science, Vol. 8815 (Springer, Cham, 2014), pp. 159–166. https://​doi.​org/​10.​1007/​978-3-319-11755-3_​18CrossRef
86.
Zurück zum Zitat N. Oleynikova, A. Khvostikov, A. Krylov, I. Mikhailov, O. Kharlova, N. Danilova, P. Malkov, N. Ageykina, and E. Fedorov, “Automatic glands segmentation in histological images obtained by endoscopic biopsy from various parts of the colon,” Endoscopy 51, S6–S7 (2019). https://doi.org/10.1055/s-0039-1681188 N. Oleynikova, A. Khvostikov, A. Krylov, I. Mikhailov, O. Kharlova, N. Danilova, P. Malkov, N. Ageykina, and E. Fedorov, “Automatic glands segmentation in histological images obtained by endoscopic biopsy from various parts of the colon,” Endoscopy 51, S6–S7 (2019). https://​doi.​org/​10.​1055/​s-0039-1681188
87.
Zurück zum Zitat E. Pavelyeva, “Hermite projection phase-only correlation method in iris key points,” in The 22nd Int. Conf. on Computer Graphics and Vision GraphiCon-2012 (2012), pp. 128–132. E. Pavelyeva, “Hermite projection phase-only correlation method in iris key points,” in The 22nd Int. Conf. on Computer Graphics and Vision GraphiCon-2012 (2012), pp. 128–132.
90.
Zurück zum Zitat E. A. Pavelyeva and A. S. Krylov, “An adaptive algorithm of iris image key points detection,” in GraphiCon-2010 (2010), pp. 320–323. E. A. Pavelyeva and A. S. Krylov, “An adaptive algorithm of iris image key points detection,” in GraphiCon-2010 (2010), pp. 320–323.
91.
Zurück zum Zitat E. A. Pavelyeva and A. S. Krylov, “Image reconstruction from phase using Hermite projection method,” in 11th Int. Conf. Pattern Recognition and Image Analysis: New Information Technologies (PRIA-11-2013) (2013), pp. 296–299. E. A. Pavelyeva and A. S. Krylov, “Image reconstruction from phase using Hermite projection method,” in 11th Int. Conf. Pattern Recognition and Image Analysis: New Information Technologies (PRIA-11-2013) (2013), pp. 296–299.
94.
Zurück zum Zitat Ya. A. Pchelintsev, A. V. Khvostikov, A. S. Krylov, L. E. Parolina, N. A. Nikoforova, L. P. Shepeleva, E. S. Prokop’ev, M. Farias, and D. Yong, “Hardness analysis of X-ray images for neural-network tuberculosis diagnosis,” Comput. Math. Model. 33, 230–243 (2022). https://doi.org/10.1007/s10598-023-09568-3 Ya. A. Pchelintsev, A. V. Khvostikov, A. S. Krylov, L. E. Parolina, N. A. Nikoforova, L. P. Shepeleva, E. S. Prokop’ev, M. Farias, and D. Yong, “Hardness analysis of X-ray images for neural-network tuberculosis diagnosis,” Comput. Math. Model. 33, 230–243 (2022). https://doi.org/10.1007/s10598-023-09568-3
95.
Zurück zum Zitat Ya. Pchelintsev, A. Nasonov, A. Krylov, S. Enoki, and Ya. Okada, “Enhancement algorithms for blinking fluorescence imaging,” in Proc. 2019 4th Int. Conf. on Biomedical Imaging, Signal Processing, Nagoya, Japan, 2019 (Association for Computing Machinery, New York, 2019), pp. 72–77. https://doi.org/10.1145/3366174.3366183 Ya. Pchelintsev, A. Nasonov, A. Krylov, S. Enoki, and Ya. Okada, “Enhancement algorithms for blinking fluorescence imaging,” in Proc. 2019 4th Int. Conf. on Biomedical Imaging, Signal Processing, Nagoya, Japan, 2019 (Association for Computing Machinery, New York, 2019), pp. 72–77. https://​doi.​org/​10.​1145/​3366174.​3366183
98.
Zurück zum Zitat I. Peterlík, D. Svoboda, V. Ulman, D. Sorokin, and M. Maška, “Model-based generation of synthetic 3D time-lapse sequences of multiple mutually interacting motile cells with filopodia,” in Simulation and Synthesis in Medical Imaging. SASHIMI 2018, Ed. by A. Gooya, O. Goksel, I. Oguz, and N. Burgos, Lecture Notes in Computer Science, 2018, Vol. 11037, pp. 71–79. https://doi.org/10.1007/978-3-030-005368_8 I. Peterlík, D. Svoboda, V. Ulman, D. Sorokin, and M. Maška, “Model-based generation of synthetic 3D time-lapse sequences of multiple mutually interacting motile cells with filopodia,” in Simulation and Synthesis in Medical Imaging. SASHIMI 2018, Ed. by A. Gooya, O. Goksel, I. Oguz, and N. Burgos, Lecture Notes in Computer Science, 2018, Vol. 11037, pp. 71–79. https://​doi.​org/​10.​1007/​978-3-030-005368_​8
105.
Zurück zum Zitat A. Semashko, A. Yatchenko, A. Krylov, A. Bezugly, N. Makhneva, and N. Potekaev, “Border extraction of epidermises, derma and subcutaneous fat in high-frequency ultrasonography,” in Proc. 22nd Int. Conf. on Computer Graphics and Vision GraphiCon’2012 (Moscow, 2012), pp. 73–75. A. Semashko, A. Yatchenko, A. Krylov, A. Bezugly, N. Makhneva, and N. Potekaev, “Border extraction of epidermises, derma and subcutaneous fat in high-frequency ultrasonography,” in Proc. 22nd Int. Conf. on Computer Graphics and Vision GraphiCon’2012 (Moscow, 2012), pp. 73–75.
106.
Zurück zum Zitat I. Sitdikov, F. Guryanov, and A. S. Krylov, “Accelerated mutual entropy maximization for biomedical image registration,” in 2015 Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 2015 (IEEE, 2015), Vol. 337, p. 340. https://doi.org/10.1109/ipta.2015.7367160 I. Sitdikov, F. Guryanov, and A. S. Krylov, “Accelerated mutual entropy maximization for biomedical image registration,” in 2015 Int. Conf. on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 2015 (IEEE, 2015), Vol. 337, p. 340. https://​doi.​org/​10.​1109/​ipta.​2015.​7367160
108.
Zurück zum Zitat D. V. Sorokin, E. A. Arifulin, Ye. S. Vassetzky, and E. V. Sheval, “Live-cell imaging and analysis of nuclear body mobility,” in The Nucleus, Ed. by R. Hancock, Methods in Molecular Biology, Vol. 2175 (Springer, New York, 2020), pp. 1–9. https://doi.org/10.1007/978-1-0716-0763-3_1 D. V. Sorokin, E. A. Arifulin, Ye. S. Vassetzky, and E. V. Sheval, “Live-cell imaging and analysis of nuclear body mobility,” in The Nucleus, Ed. by R. Hancock, Methods in Molecular Biology, Vol. 2175 (Springer, New York, 2020), pp. 1–9. https://​doi.​org/​10.​1007/​978-1-0716-0763-3_​1
109.
Zurück zum Zitat D. V. Sorokin and A. S. Krylov, “Short reference image quality estimation using modified angular edge coherence,” in Proc. 20th Int. Conf. on Computer Graphics and Vision GraphiCon’2010 (St. Petersburg, 2010), Vol. 137, p. 140. D. V. Sorokin and A. S. Krylov, “Short reference image quality estimation using modified angular edge coherence,” in Proc. 20th Int. Conf. on Computer Graphics and Vision GraphiCon’2010 (St. Petersburg, 2010), Vol. 137, p. 140.
111.
Zurück zum Zitat D. V. Sorokin, M. M. Mizotin, and A. S. Krylov, “Gauss–Laguerre keypoints extraction using fast hermite projection method,” in Image Analysis and Recognition. ICIAR 2011, Ed. by M. Kamel and A. Campilho, Lecture Notes in Computer Science, Vol. 6753 (Springer Berlin Heidelberg, 2011), pp. 284–293. https://doi.org/10.1007/978-3-642-21593-3_29CrossRef D. V. Sorokin, M. M. Mizotin, and A. S. Krylov, “Gauss–Laguerre keypoints extraction using fast hermite projection method,” in Image Analysis and Recognition. ICIAR 2011, Ed. by M. Kamel and A. Campilho, Lecture Notes in Computer Science, Vol. 6753 (Springer Berlin Heidelberg, 2011), pp. 284–293. https://​doi.​org/​10.​1007/​978-3-642-21593-3_​29CrossRef
113.
Zurück zum Zitat D. V. Sorokin, I. Peterlik, V. Ulman, D. Svoboda, and M. Maska, “Model-based generation of synthetic 3D time-lapse sequences of motile cells with growing filopodia,” in 2017 IEEE 14th Int. Symp. on Biomedical Imaging (ISBI 2017), Melbourne, 2017 (IEEE, 2017), pp. 822–826. https://doi.org/10.1109/isbi.2017.7950644 D. V. Sorokin, I. Peterlik, V. Ulman, D. Svoboda, and M. Maska, “Model-based generation of synthetic 3D time-lapse sequences of motile cells with growing filopodia,” in 2017 IEEE 14th Int. Symp. on Biomedical Imaging (ISBI 2017), Melbourne, 2017 (IEEE, 2017), pp. 822–826. https://​doi.​org/​10.​1109/​isbi.​2017.​7950644
114.
Zurück zum Zitat D. V. Sorokin, I. Peterlik, V. Ulman, D. Svoboda, T. Necasova, K. Morgaenko, L. Eiselleova, L. Tesarova, and M. Maska, “FiloGen: A model-based generator of synthetic 3D time-lapse sequences of single motile cells with growing and branching filopodia,” IEEE Trans. Med. Imaging 37, 2630–2641 (2018). https://doi.org/10.1109/tmi.2018.2845884CrossRefPubMed D. V. Sorokin, I. Peterlik, V. Ulman, D. Svoboda, T. Necasova, K. Morgaenko, L. Eiselleova, L. Tesarova, and M. Maska, “FiloGen: A model-based generator of synthetic 3D time-lapse sequences of single motile cells with growing and branching filopodia,” IEEE Trans. Med. Imaging 37, 2630–2641 (2018). https://​doi.​org/​10.​1109/​tmi.​2018.​2845884CrossRefPubMed
117.
Zurück zum Zitat M. Storozhilova, A. Lukin, D. Yurin, and V. Sinitsyn, “2.5D Extension of neighborhood filters for noise reduction in 3D medical CT images,” in Transactions on Computational Science XIX, Ed. by M. L. Gavrilova, C. J. K. Tan, and A. Konushin, Lecture Notes in Computer Science, Vol. 7870 (Springer, Berlin, 2013), pp. 1–16. https://doi.org/10.1007/978-3-642-39759-2_1CrossRef M. Storozhilova, A. Lukin, D. Yurin, and V. Sinitsyn, “2.5D Extension of neighborhood filters for noise reduction in 3D medical CT images,” in Transactions on Computational Science XIX, Ed. by M. L. Gavrilova, C. J. K. Tan, and A. Konushin, Lecture Notes in Computer Science, Vol. 7870 (Springer, Berlin, 2013), pp. 1–16. https://​doi.​org/​10.​1007/​978-3-642-39759-2_​1CrossRef
119.
Zurück zum Zitat D. I. Sungatullina, A. S. Krylov, and D. N. Fedorov, “Fast registration algorithms for histological images,” Nauchnaya Vizualizatsiya 6 (4), 61–71 (2014). D. I. Sungatullina, A. S. Krylov, and D. N. Fedorov, “Fast registration algorithms for histological images,” Nauchnaya Vizualizatsiya 6 (4), 61–71 (2014).
120.
Zurück zum Zitat A. S. Thomaz Aline, A. S. Lima Jonathan, C. J. Miosso, C. Q. Farias Mylene, A. S. Krylov, and Y. Ding, “Undersampled magnetic resonance image reconstructions based on a combination of U-Nets and L1, L2, and TV optimizations,” in 2022 IEEE Int. Conf. on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 2022 (IEEE, 2022), pp. 1–6. https://doi.org/10.1109/ist55454.2022.9827727 A. S. Thomaz Aline, A. S. Lima Jonathan, C. J. Miosso, C. Q. Farias Mylene, A. S. Krylov, and Y. Ding, “Undersampled magnetic resonance image reconstructions based on a combination of U-Nets and L1, L2, and TV optimizations,” in 2022 IEEE Int. Conf. on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 2022 (IEEE, 2022), pp. 1–6. https://​doi.​org/​10.​1109/​ist55454.​2022.​9827727
123.
Zurück zum Zitat A. V. Umnov, A. S. Krylov, and A. V. Nasonov, “Ringing artifact suppression using sparse representation,” in Advanced Concepts for Intelligent Vision Systems, Ed. by S. Battiato, J. Blanc-Talon, G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, Vol. 9386 (Springer, Cham, 2015), pp. 35–45. https://doi.org/10.1007/978-3-319-25903-1_4CrossRef A. V. Umnov, A. S. Krylov, and A. V. Nasonov, “Ringing artifact suppression using sparse representation,” in Advanced Concepts for Intelligent Vision Systems, Ed. by S. Battiato, J. Blanc-Talon, G. Gallo, W. Philips, D. Popescu, and P. Scheunders, Lecture Notes in Computer Science, Vol. 9386 (Springer, Cham, 2015), pp. 35–45. https://​doi.​org/​10.​1007/​978-3-319-25903-1_​4CrossRef
126.
Zurück zum Zitat A. Yatchenko and A. Krylov, “Cross-frame ultrasonic color Doppler flow heart image unwrapping,” in Functional Imaging and Modeling of the Heart, Ed. by H. van Assen, P. Bovendeerd, and T. Delhaas, Lecture Notes in Computer Science, Vol. 9126 (Springer, Cham, 2015), pp. 265–272. https://doi.org/10.1007/978-3-319-20309-6_31CrossRef A. Yatchenko and A. Krylov, “Cross-frame ultrasonic color Doppler flow heart image unwrapping,” in Functional Imaging and Modeling of the Heart, Ed. by H. van Assen, P. Bovendeerd, and T. Delhaas, Lecture Notes in Computer Science, Vol. 9126 (Springer, Cham, 2015), pp. 265–272. https://​doi.​org/​10.​1007/​978-3-319-20309-6_​31CrossRef
127.
Zurück zum Zitat A. M. Yatchenko, A. S. Krylov, A. V. Gavrilov, and I. V. Arkhipov, “Graph-cut based antialiasing for Doppler ultrasound color flow medical imaging,” in 2011 Visual Communications and Image Processing (VCIP), Tainan, Taiwan, 2011 (IEEE, 2011), pp. 1–4. https://doi.org/10.1109/vcip.2011.6115923 A. M. Yatchenko, A. S. Krylov, A. V. Gavrilov, and I. V. Arkhipov, “Graph-cut based antialiasing for Doppler ultrasound color flow medical imaging,” in 2011 Visual Communications and Image Processing (VCIP), Tainan, Taiwan, 2011 (IEEE, 2011), pp. 1–4. https://​doi.​org/​10.​1109/​vcip.​2011.​6115923
129.
Zurück zum Zitat A. Yatchenko, A. Krylov, A. Gavrilov, V. Sandrikov, and T. Kulagina, “Image preprocessing for color Doppler flow antialiasing using power and complex phase data,” in 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 2014 (IEEE, 2014), pp. 1072–1076. https://doi.org/10.1109/ICOSP.2014.7015168 A. Yatchenko, A. Krylov, A. Gavrilov, V. Sandrikov, and T. Kulagina, “Image preprocessing for color Doppler flow antialiasing using power and complex phase data,” in 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 2014 (IEEE, 2014), pp. 1072–1076. https://​doi.​org/​10.​1109/​ICOSP.​2014.​7015168
Metadaten
Titel
Image Analysis and Enhancement: General Methods and Biomedical Applications
verfasst von
A. S. Krylov
A. V. Nasonov
D. V. Sorokin
A. V. Khvostikov
E. A. Pavelyeva
Ya. A. Pchelintsev
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2023
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661823040235

Weitere Artikel der Ausgabe 4/2023

Pattern Recognition and Image Analysis 4/2023 Zur Ausgabe

SCIENTIFIC SCHOOLS OF THE FEDERAL RESEARCH CENTER “COMPUTER SCIENCE AND CONTROL” OF THE RUSSIAN ACADEMY OF SCIENCES, MOSCOW, THE RUSSIAN FEDERATION

The Role of the Scientific Council “Cybernetics” of the USSR Academy of Sciences/the Russian Academy of Sciences in the Development of National Cybernetics and Computer Technology

LEADING SCIENTIFIC SCHOOLS IN IMAGE ANALYSIS, PATTERN RECOGNITION, AND RELATED PROBLEMS OF COMPUTER SCIENCE IN THE USSR, THE REPUBLIC OF BELARUS AND THE RUSSIAN FEDERATION

Formation and Development of Image Analysis and Pattern Recognition in the USSR, the Republic of Belarus, and the Russian Federation

SCIENTIFIC SCHOOLS OF THE SAINT PETERSBURG ELECTROTECHNICAL UNIVERSITY “LETI,” St. PETERSBURG, THE RUSSIAN FEDERATION

The St. Petersburg Scientific School of Pattern Recognition, Signal Analysis, and Biotechnical Systems

SCIENTIFIC SCHOOLS OF THE V.A. TRAPEZNIKOV INSTITUTE OF CONTROL SCIENCES OF THE RUSSIAN ACADEMY OF SCIENCES, MOSCOW, THE RUSSIAN FEDERATION

On the Work of the Institute of Control Sciences of the Russian Academy of Sciences in the Field of Pattern Recognition Theory and Applications in the 20th Century

SCIENTIFIC SCHOOL OF THE KOTELNIKOV INSTITUTE OF RADIO ENGINEERING AND ELECTRONICS OF THE RUSSIAN ACADEMY OF SCIENCES, MOSCOW, THE RUSSIAN FEDERATION

The Physical Principles of the Construction of Systems for Safe Monitoring of the State of a Human Operator

SCIENTIFIC SCHOOL OF THE IMAGE PROCESSING SYSTEMS INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES–BRANCH OF THE FEDERAL SCIENTIFIC RESEARCH CENTER “CRYSTALLOGRAPHY AND PHOTONICS” OF THE RUSSIAN ACADEMY OF SCIENCES, SAMARA, THE RUSSIAN FEDERATION

Methods for Processing and Understanding Image Sequences in Autonomous Navigation Problems

Premium Partner