Skip to main content

2019 | OriginalPaper | Buchkapitel

Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems

verfasst von : Kannappan Palaniappan, Filiz Bunyak, Shyam S. Chaurasia

Erschienen in: Ocular Fluid Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The retina is directly connected to the central nervous system and the vascular circulation, which uniquely enables three-dimensional retinal tissue structures and blood flow dynamics to be imaged and visualized from the exterior using non-invasive imaging modalities. Rapid advances in the types of diagnostic imaging modalities, combined with image processing, computer vision, artificial intelligence, and machine learning algorithms for quantitative image analytics are opening up a host of new possibilities for early diagnosis and treatment of a broad range of eye and systemic diseases with clinical impact. Incorporating patient-specific imaging to estimate geometric structures of vessel morphology and boundary conditions as input to the mathematical and computational fluid-dynamics modeling frameworks described in earlier chapters will enable new ways to predict treatment outcomes and model physiological effects at the systemic level. This chapter describes a set of widely used retinal imaging modalities, including fundoscopy, fluorescein angiography (FA), and optical coherence tomography (OCT), along with emerging modalities to measure retinal blood flow dynamics like optical coherence tomography angiography (OCTA) and laser speckle flowgraphy (LSFG). We use vessel segmentation and quantification as a prototypical ophthalmology image analysis pipeline that can be applied across imaging modalities, to describe processing techniques for measuring geometrical vascular structures. Current challenges and future opportunities especially in using artificial intelligence and deep learning architectures for patient optimized precision medicine and clinical efficacy are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat TW Secomb and AR Pries. The microcirculation: Physiology at the mesoscale. Journal of Physiology, 589:1047–1052, 2011.CrossRef TW Secomb and AR Pries. The microcirculation: Physiology at the mesoscale. Journal of Physiology, 589:1047–1052, 2011.CrossRef
2.
Zurück zum Zitat JC Arciero, P Causin, and F Malgaroli. Mathematical methods for modeling the microcirculation. AIM Biophysics, 4(3):362–399, 2017.CrossRef JC Arciero, P Causin, and F Malgaroli. Mathematical methods for modeling the microcirculation. AIM Biophysics, 4(3):362–399, 2017.CrossRef
3.
Zurück zum Zitat P Causin, G Guidoboni, F Malgaroli, R Sacco, and A Harris. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation. Biomechanics and Modeling in Mechanobiology, 15(3):525–542, 2016.CrossRef P Causin, G Guidoboni, F Malgaroli, R Sacco, and A Harris. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation. Biomechanics and Modeling in Mechanobiology, 15(3):525–542, 2016.CrossRef
5.
Zurück zum Zitat JH Thrall, X Li, Q Li, C Cruz, S Do, K Dreyer, and J Brink. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology, 15(3):504–508, 2018.CrossRef JH Thrall, X Li, Q Li, C Cruz, S Do, K Dreyer, and J Brink. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology, 15(3):504–508, 2018.CrossRef
6.
Zurück zum Zitat P Teikari, RP Najjar, L Schmetterer, and D Milea. Embedded deep learning in ophthalmology: Making ophthalmic imaging smarter. Therapeutic Advances in Ophthalmology, 11, 2019.CrossRef P Teikari, RP Najjar, L Schmetterer, and D Milea. Embedded deep learning in ophthalmology: Making ophthalmic imaging smarter. Therapeutic Advances in Ophthalmology, 11, 2019.CrossRef
7.
Zurück zum Zitat SM Heringa, WH Bouvy, E Van Den Berg, AC Moll, LJ Kappelle, and GJ Biessels. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: A systematic review. Journal of Cerebral Blood Flow & Metabolism, 33(7):983–995, 2013.CrossRef SM Heringa, WH Bouvy, E Van Den Berg, AC Moll, LJ Kappelle, and GJ Biessels. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: A systematic review. Journal of Cerebral Blood Flow & Metabolism, 33(7):983–995, 2013.CrossRef
8.
Zurück zum Zitat L Arnould, C Binquet, C Guenancia, S Alassane, R Kawasaki, V Daien, C Tzourio, Y Kawasaki, A Bourredjem, A Bron, and C. Creuzot-Garcher. Association between the retinal vascular network with singapore “i” vessel assessment (siva) software, cardiovascular history and risk factors in the elderly: The montrachet study, population-based study. PloS One, 13(4):e0194694, 2018.CrossRef L Arnould, C Binquet, C Guenancia, S Alassane, R Kawasaki, V Daien, C Tzourio, Y Kawasaki, A Bourredjem, A Bron, and C. Creuzot-Garcher. Association between the retinal vascular network with singapore “i” vessel assessment (siva) software, cardiovascular history and risk factors in the elderly: The montrachet study, population-based study. PloS One, 13(4):e0194694, 2018.CrossRef
9.
Zurück zum Zitat MA Mazurowski, M Buda, A Saha, and MR Bashir. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on mri. Journal of Magnetic Resonance Imaging, 49(4):939–954, 2019.CrossRef MA Mazurowski, M Buda, A Saha, and MR Bashir. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on mri. Journal of Magnetic Resonance Imaging, 49(4):939–954, 2019.CrossRef
10.
Zurück zum Zitat E Rahimy. Deep learning applications in ophthalmology. Current Opinion in Ophthalmology, 29(3):254–260, 2018.CrossRef E Rahimy. Deep learning applications in ophthalmology. Current Opinion in Ophthalmology, 29(3):254–260, 2018.CrossRef
11.
Zurück zum Zitat W Lu, Y Tong, Y Yu, Y Xing, C Chen, and Y Shen. Applications of artificial intelligence in ophthalmology: General overview. Journal of Ophthalmology, 11(9), 2018. W Lu, Y Tong, Y Yu, Y Xing, C Chen, and Y Shen. Applications of artificial intelligence in ophthalmology: General overview. Journal of Ophthalmology, 11(9), 2018.
12.
Zurück zum Zitat R Kappor, SP Walters, and LA Al-Aswad. The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64:233–240, 2019.CrossRef R Kappor, SP Walters, and LA Al-Aswad. The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64:233–240, 2019.CrossRef
13.
Zurück zum Zitat DSW Ting, LR Pasquale, L Peng, JP Campbell, AY Lee, R Raman, GSW Tan, L Schmetterer, PA Keane, and TY Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.CrossRef DSW Ting, LR Pasquale, L Peng, JP Campbell, AY Lee, R Raman, GSW Tan, L Schmetterer, PA Keane, and TY Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.CrossRef
14.
Zurück zum Zitat MD Abramoff, MK Garvin, and M Sonka. Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3:169–208, 2010.CrossRef MD Abramoff, MK Garvin, and M Sonka. Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3:169–208, 2010.CrossRef
15.
Zurück zum Zitat TY Wong and NM Bressler. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. Journal of the American Medical Association, 316(22):2366–2367, 2016.CrossRef TY Wong and NM Bressler. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. Journal of the American Medical Association, 316(22):2366–2367, 2016.CrossRef
16.
Zurück zum Zitat H Mir, H Al-Nashash, and UR Acharya. Quantification of diabetic retinopathy using digital fundus images. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 161–169. CRC Press, 2014. H Mir, H Al-Nashash, and UR Acharya. Quantification of diabetic retinopathy using digital fundus images. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 161–169. CRC Press, 2014.
17.
Zurück zum Zitat MRK Mookiah, UR Acharya, CK Chua, CM Lim, EYK Ng, and A Laude. Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43(12):2136–2155, 2013.CrossRef MRK Mookiah, UR Acharya, CK Chua, CM Lim, EYK Ng, and A Laude. Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43(12):2136–2155, 2013.CrossRef
18.
Zurück zum Zitat MRK Mookiah, UR Acharya, C Chakraborty, LC Min, EYK Ng, and JS Suri. Automated glaucoma identification using retinal fundus images: A hybrid texture feature extraction paradigm. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 9–22. CRC Press, 2014. MRK Mookiah, UR Acharya, C Chakraborty, LC Min, EYK Ng, and JS Suri. Automated glaucoma identification using retinal fundus images: A hybrid texture feature extraction paradigm. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 9–22. CRC Press, 2014.
19.
Zurück zum Zitat N Thakur and M Juneja. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42:162–189, 2018.CrossRef N Thakur and M Juneja. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42:162–189, 2018.CrossRef
20.
Zurück zum Zitat JC Tovey and DP Hainsworth. Artificial vision: Hope for the new millennium. Missouri Medicine, 112(1):76–84, 2015. JC Tovey and DP Hainsworth. Artificial vision: Hope for the new millennium. Missouri Medicine, 112(1):76–84, 2015.
23.
Zurück zum Zitat TJ MacGillivray, E Trucco, JR Cameron, B Dhillon, JG Houston, and EJ van Beek. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. The British Journal of Radiology, 87(1040), 2014.CrossRef TJ MacGillivray, E Trucco, JR Cameron, B Dhillon, JG Houston, and EJ van Beek. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. The British Journal of Radiology, 87(1040), 2014.CrossRef
24.
Zurück zum Zitat A Newman, N Andrew, and R Casson. Review of the association between retinal microvascular characteristics and eye disease. Clinical & Experimental Ophthalmology, 46(5):531–552, 2018.CrossRef A Newman, N Andrew, and R Casson. Review of the association between retinal microvascular characteristics and eye disease. Clinical & Experimental Ophthalmology, 46(5):531–552, 2018.CrossRef
25.
Zurück zum Zitat V Gulshan, L Peng, M Coram, MC Stumpe, Derek Wu, A Narayanaswamy, S Venugopalan, K Widner, T Madams, J Cuadros, R Kim, R Raman, PC Nelson, JL Mega, and DR Webster. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association, 316(22):2402–2410, 2016.CrossRef V Gulshan, L Peng, M Coram, MC Stumpe, Derek Wu, A Narayanaswamy, S Venugopalan, K Widner, T Madams, J Cuadros, R Kim, R Raman, PC Nelson, JL Mega, and DR Webster. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association, 316(22):2402–2410, 2016.CrossRef
26.
Zurück zum Zitat HK Banda, GK Shah, and KJ Blinder. Applications of fundus autofluorescence and widefield angiography in clinical practice. Canadian Journal of Ophthalmology, 2018. HK Banda, GK Shah, and KJ Blinder. Applications of fundus autofluorescence and widefield angiography in clinical practice. Canadian Journal of Ophthalmology, 2018.
27.
Zurück zum Zitat RR Lim, T Vaidya, SG Gadde, NK Yadav, S Sethu, DP Hainsworth, RR Mohan, A Ghosh, and SS Chaurasia. Correlation between systemic s100a8 and s100a9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13:1581–1589, 2019.CrossRef RR Lim, T Vaidya, SG Gadde, NK Yadav, S Sethu, DP Hainsworth, RR Mohan, A Ghosh, and SS Chaurasia. Correlation between systemic s100a8 and s100a9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13:1581–1589, 2019.CrossRef
28.
Zurück zum Zitat S Bearelly and SW Cousins. Fundus autofluorescence imaging in age-related macular degeneration and geographic atrophy. In Retinal Degenerative Diseases, pages 395–402. Springer, 2010. S Bearelly and SW Cousins. Fundus autofluorescence imaging in age-related macular degeneration and geographic atrophy. In Retinal Degenerative Diseases, pages 395–402. Springer, 2010.
29.
Zurück zum Zitat R Bernardes, P Serranho, and C Lobo. Digital ocular fundus imaging: a review. Ophthalmologica, 226(4):161–181, 2011.CrossRef R Bernardes, P Serranho, and C Lobo. Digital ocular fundus imaging: a review. Ophthalmologica, 226(4):161–181, 2011.CrossRef
30.
Zurück zum Zitat S Guigui, T Lifshitz, and J Levy. Screening for diabetic retinopathy: Review of current methods. Hospital Practice, 40(2):64–72, 2012.CrossRef S Guigui, T Lifshitz, and J Levy. Screening for diabetic retinopathy: Review of current methods. Hospital Practice, 40(2):64–72, 2012.CrossRef
31.
Zurück zum Zitat N Panwar, P Huang, J Lee, PA Keane, TS Chuan, A Richhariya, S Teoh, TH Lim, and R Agrawal. Fundus photography in the 21st century - a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health, 22(3), 2016.CrossRef N Panwar, P Huang, J Lee, PA Keane, TS Chuan, A Richhariya, S Teoh, TH Lim, and R Agrawal. Fundus photography in the 21st century - a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health, 22(3), 2016.CrossRef
32.
Zurück zum Zitat GP Leese, DM Broadbent, SP Harding, and JP Vora. Detection of sight-threatening diabetic eye disease. Diabetic Medicine, 13(10), 1996.CrossRef GP Leese, DM Broadbent, SP Harding, and JP Vora. Detection of sight-threatening diabetic eye disease. Diabetic Medicine, 13(10), 1996.CrossRef
33.
Zurück zum Zitat PFJ Hoyng, AH Rulo, EL Greve, M Astin, and M Gjötterberg. Fluorescein angiographic evaluation of the effect of latanoprost treatment on blood-retinal barrier integrity: A review of studies conducted on pseudophakic glaucoma patients and on phakic and aphakic monkeys. Survey of Ophthalmology, 41:S83–S88, 1997.CrossRef PFJ Hoyng, AH Rulo, EL Greve, M Astin, and M Gjötterberg. Fluorescein angiographic evaluation of the effect of latanoprost treatment on blood-retinal barrier integrity: A review of studies conducted on pseudophakic glaucoma patients and on phakic and aphakic monkeys. Survey of Ophthalmology, 41:S83–S88, 1997.CrossRef
34.
Zurück zum Zitat R Brancato and G Trabucchi. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases. In Seminars in Ophthalmology, volume 13, pages 189–198, 1998.CrossRef R Brancato and G Trabucchi. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases. In Seminars in Ophthalmology, volume 13, pages 189–198, 1998.CrossRef
35.
Zurück zum Zitat A Ly, L Nivison-Smith, N Assaad, and M Kalloniatis. Fundus autofluorescence in age-related macular degeneration. Optometry and Vision Science, 94(2), 2017.CrossRef A Ly, L Nivison-Smith, N Assaad, and M Kalloniatis. Fundus autofluorescence in age-related macular degeneration. Optometry and Vision Science, 94(2), 2017.CrossRef
36.
Zurück zum Zitat A Wessing. Diabetic retinopathy: update on diagnosis and treatment. Nephrology, Dialysis, Transplantation: European Dialysis and Transplant Association-European Renal Association, 12(9), 1997.CrossRef A Wessing. Diabetic retinopathy: update on diagnosis and treatment. Nephrology, Dialysis, Transplantation: European Dialysis and Transplant Association-European Renal Association, 12(9), 1997.CrossRef
37.
Zurück zum Zitat MA Hochman, CM Seery, and MA Zarbin. Pathophysiology and management of subretinal hemorrhage. Survey of Ophthalmology, 42(3):195–213, 1997.CrossRef MA Hochman, CM Seery, and MA Zarbin. Pathophysiology and management of subretinal hemorrhage. Survey of Ophthalmology, 42(3):195–213, 1997.CrossRef
38.
Zurück zum Zitat KA Klima. Focus on fluorescein angiography. Insight, 31(2), 2006. KA Klima. Focus on fluorescein angiography. Insight, 31(2), 2006.
39.
Zurück zum Zitat D Schmidt. The mystery of cotton-wool spots - a review of recent and historical descriptions. European Journal of Medical Research, 13(6), 2008. D Schmidt. The mystery of cotton-wool spots - a review of recent and historical descriptions. European Journal of Medical Research, 13(6), 2008.
40.
Zurück zum Zitat JG Fujimoto, C Pitris, SA Boppart, and ME Brezinski. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2(1–2):9–25, 2000.CrossRef JG Fujimoto, C Pitris, SA Boppart, and ME Brezinski. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2(1–2):9–25, 2000.CrossRef
41.
Zurück zum Zitat ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman. Optical coherence tomography: History, current status, and laboratory work. Investigative Ophthalmology & Visual Science, 52(5):2425–2436, 2011.CrossRef ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman. Optical coherence tomography: History, current status, and laboratory work. Investigative Ophthalmology & Visual Science, 52(5):2425–2436, 2011.CrossRef
42.
Zurück zum Zitat ML Gabriele, G Wollstein, H Ishikawa, J Xu, J Kim, L Kagemann, LS Folio, and JS Schuman. Three dimensional optical coherence tomography imaging: Advantages and advances. Progress in Retinal and Eye Research, 29(6):556–579, 2010.CrossRef ML Gabriele, G Wollstein, H Ishikawa, J Xu, J Kim, L Kagemann, LS Folio, and JS Schuman. Three dimensional optical coherence tomography imaging: Advantages and advances. Progress in Retinal and Eye Research, 29(6):556–579, 2010.CrossRef
43.
Zurück zum Zitat T Oshitari and Y Mitamura. Optical coherence tomography for complete management of patients with diabetic retinopathy. Current Diabetes Reviews, 6(4):207–214, 2010.CrossRef T Oshitari and Y Mitamura. Optical coherence tomography for complete management of patients with diabetic retinopathy. Current Diabetes Reviews, 6(4):207–214, 2010.CrossRef
44.
Zurück zum Zitat W Geitzenauer, CK Hitzenberger, and UM Schmidt-Erfurth. Retinal optical coherence tomography: Past, present and future perspectives. British Journal of Ophthalmology, 95(2):171–177, 2011.CrossRef W Geitzenauer, CK Hitzenberger, and UM Schmidt-Erfurth. Retinal optical coherence tomography: Past, present and future perspectives. British Journal of Ophthalmology, 95(2):171–177, 2011.CrossRef
45.
Zurück zum Zitat SY Cohen, A Miere, S Nghiem-Buffet, F Fajnkuchen, EH Souied, and S Mrejen. Clinical applications of optical coherence tomography angiography: What we have learnt in the first 3 years. European Journal of Ophthalmology, 28(5):491–502, 2018.CrossRef SY Cohen, A Miere, S Nghiem-Buffet, F Fajnkuchen, EH Souied, and S Mrejen. Clinical applications of optical coherence tomography angiography: What we have learnt in the first 3 years. European Journal of Ophthalmology, 28(5):491–502, 2018.CrossRef
46.
Zurück zum Zitat H Jiao, LJ Hill, LE Downie, and HR Chinnery. Anterior segment optical coherence tomography: Its application in clinical practice and experimental models of disease. Clinical and Experimental Optometry, 2018. H Jiao, LJ Hill, LE Downie, and HR Chinnery. Anterior segment optical coherence tomography: Its application in clinical practice and experimental models of disease. Clinical and Experimental Optometry, 2018.
47.
Zurück zum Zitat DE Baskin. Optical coherence tomography in diabetic macular edema. Current Opinion in Ophthalmology, 21(3):172–177, 2010.CrossRef DE Baskin. Optical coherence tomography in diabetic macular edema. Current Opinion in Ophthalmology, 21(3):172–177, 2010.CrossRef
48.
Zurück zum Zitat CE Mendoza-Santiesteban, A Gonzalez-Garcia, TR Hedges, Y Hernandez-Silva, Y Columbie-Garbey, L Fernández-Cherkasova, R Santiesteban-Freixas, and SV Casali. Optical coherence tomography for neuro-ophthalmologic diagnoses. Seminars in Ophthalmology, 25(4), 2010.CrossRef CE Mendoza-Santiesteban, A Gonzalez-Garcia, TR Hedges, Y Hernandez-Silva, Y Columbie-Garbey, L Fernández-Cherkasova, R Santiesteban-Freixas, and SV Casali. Optical coherence tomography for neuro-ophthalmologic diagnoses. Seminars in Ophthalmology, 25(4), 2010.CrossRef
49.
Zurück zum Zitat L Van Melkebeke, J Barbosa-Breda, M Huygens, and I Stalmans. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Research, 60(3):139–151, 2018.CrossRef L Van Melkebeke, J Barbosa-Breda, M Huygens, and I Stalmans. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Research, 60(3):139–151, 2018.CrossRef
50.
Zurück zum Zitat KD Bojikian, PP Chen, and JC Wen. Optical coherence tomography angiography in glaucoma. Current Opinion in Ophthalmology, 30(2):110–116, 2019.CrossRef KD Bojikian, PP Chen, and JC Wen. Optical coherence tomography angiography in glaucoma. Current Opinion in Ophthalmology, 30(2):110–116, 2019.CrossRef
51.
Zurück zum Zitat A. F. Hasler, K. Palaniappan, M. Manyin, and J. Dodge. A high performance interactive image spreadsheet (iiss). Computers in Physics, 8(4):325–342, 1994.CrossRef A. F. Hasler, K. Palaniappan, M. Manyin, and J. Dodge. A high performance interactive image spreadsheet (iiss). Computers in Physics, 8(4):325–342, 1994.CrossRef
52.
Zurück zum Zitat K. Palaniappan, A. Hasler, J. Fraser, and M. Manyin. Network-based visualization using the distributed image spreadsheet (diss). In 17th Int. AMS Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography and Hydrology, pages 399–403, 2001. K. Palaniappan, A. Hasler, J. Fraser, and M. Manyin. Network-based visualization using the distributed image spreadsheet (diss). In 17th Int. AMS Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography and Hydrology, pages 399–403, 2001.
53.
Zurück zum Zitat C. Lamirel, N. Newman, and V. Biousse. The use of optical coherence tomography in neurology. Rev Neurol Dis, 6(4):E105–E120, 2009. C. Lamirel, N. Newman, and V. Biousse. The use of optical coherence tomography in neurology. Rev Neurol Dis, 6(4):E105–E120, 2009.
54.
Zurück zum Zitat AP Dhawan, B D’Alessandro, and X Fu. Optical imaging modalities for biomedical applications. IEEE Reviews in Biomedical Engineering, 3:69–92, 2010.CrossRef AP Dhawan, B D’Alessandro, and X Fu. Optical imaging modalities for biomedical applications. IEEE Reviews in Biomedical Engineering, 3:69–92, 2010.CrossRef
55.
Zurück zum Zitat R Singh, SLCY Mei, W Tam, D Raju, and A Ruszkiewicz. Real-time histology with the endocytoscope. World Journal of Gastroenterology: WJG, 16(40), 2010.CrossRef R Singh, SLCY Mei, W Tam, D Raju, and A Ruszkiewicz. Real-time histology with the endocytoscope. World Journal of Gastroenterology: WJG, 16(40), 2010.CrossRef
56.
Zurück zum Zitat J Doustar, T Torbati, KL Black, Y Koronyo, and M Koronyo-Hamaoui. Optical coherence tomography in alzheimer’s disease and other neurodegenerative diseases. Frontiers in Neurology, 8:701, 2017.CrossRef J Doustar, T Torbati, KL Black, Y Koronyo, and M Koronyo-Hamaoui. Optical coherence tomography in alzheimer’s disease and other neurodegenerative diseases. Frontiers in Neurology, 8:701, 2017.CrossRef
57.
Zurück zum Zitat CJ Chen, JS Kumar, SH Chen, D Ding, TJ Buell, S Sur, N Ironside, E Luther, M Ragosta, MS Park, MY Kalani, KC Liu, and RM Starke. Optical coherence tomography: Future applications in cerebrovascular imaging. Stroke, 49(4):1044–1050, 2018.CrossRef CJ Chen, JS Kumar, SH Chen, D Ding, TJ Buell, S Sur, N Ironside, E Luther, M Ragosta, MS Park, MY Kalani, KC Liu, and RM Starke. Optical coherence tomography: Future applications in cerebrovascular imaging. Stroke, 49(4):1044–1050, 2018.CrossRef
58.
Zurück zum Zitat L Wang, O Murphy, NG Caldito, PA Calabresi, and S Saidha. Emerging applications of optical coherence tomography angiography (OCTA) in neurological research. Eye and Vision, 2018. L Wang, O Murphy, NG Caldito, PA Calabresi, and S Saidha. Emerging applications of optical coherence tomography angiography (OCTA) in neurological research. Eye and Vision, 2018.
59.
Zurück zum Zitat AH Kashani, CL Chen, JK Gahm, F Zheng, GM Richter, PJ Rosenfeld, Y Shi, and RK Wang. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 60:66–100, 2017.CrossRef AH Kashani, CL Chen, JK Gahm, F Zheng, GM Richter, PJ Rosenfeld, Y Shi, and RK Wang. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 60:66–100, 2017.CrossRef
60.
Zurück zum Zitat SS Gao, Y Jia, et al. Optical coherence tomography angiography. Investigative Ophthalmology and Visual Science, 57:OCT27–OCT36, 2016.CrossRef SS Gao, Y Jia, et al. Optical coherence tomography angiography. Investigative Ophthalmology and Visual Science, 57:OCT27–OCT36, 2016.CrossRef
61.
Zurück zum Zitat RF Spaide, JG Fujimoto, NK Waheed, SR Sadda, and G Staurenghi. Optical coherence tomography angiography. Progress in Retinal and Eye Research, 64:1–55, 2018.CrossRef RF Spaide, JG Fujimoto, NK Waheed, SR Sadda, and G Staurenghi. Optical coherence tomography angiography. Progress in Retinal and Eye Research, 64:1–55, 2018.CrossRef
62.
Zurück zum Zitat T Shiba, M Takahashi, T Matsumoto, and Y Hori. Relationship between metabolic syndrome and ocular microcirculation shown by laser speckle flowgraphy in a hospital setting devoted to sleep apnea syndrome diagnostics. Journal of Diabetes Research, 2017. T Shiba, M Takahashi, T Matsumoto, and Y Hori. Relationship between metabolic syndrome and ocular microcirculation shown by laser speckle flowgraphy in a hospital setting devoted to sleep apnea syndrome diagnostics. Journal of Diabetes Research, 2017.
63.
Zurück zum Zitat X Wei, PK Balne, KE Meissner, VA Barathi, L Schmetterer, and R Agrawal. Assessment of flow dynamics in retinal and choroidal microcirculation. Survey of Ophthalmology, 63(5):646–664, 2018.CrossRef X Wei, PK Balne, KE Meissner, VA Barathi, L Schmetterer, and R Agrawal. Assessment of flow dynamics in retinal and choroidal microcirculation. Survey of Ophthalmology, 63(5):646–664, 2018.CrossRef
64.
Zurück zum Zitat S Kikuchi, K Miyake, Y Tada, D Uchida, A Koya, Y Saito, T Ohura, and N Azuma. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. Vascular, 2018. S Kikuchi, K Miyake, Y Tada, D Uchida, A Koya, Y Saito, T Ohura, and N Azuma. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. Vascular, 2018.
65.
Zurück zum Zitat SS Chaurasia, RR Lim, BH Parikh, YS Wey, BB Tun, TY Wong, CD Luu, R Agrawal, A Ghosh, A Mortellaro, E Rackoczy, RR Mohan, and VA Barathi. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Nature Scientific Reports, 8(1), 2018. SS Chaurasia, RR Lim, BH Parikh, YS Wey, BB Tun, TY Wong, CD Luu, R Agrawal, A Ghosh, A Mortellaro, E Rackoczy, RR Mohan, and VA Barathi. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Nature Scientific Reports, 8(1), 2018.
66.
Zurück zum Zitat T Shiba, M Takahashi, T Matsumoto, and Y Hori. Pulse waveform analysis in ocular microcirculation by laser speckle flowgraphy in patients with left ventricular systolic and diastolic dysfunction. Journal of Vascular Research, 55(6):329–337, 2018.CrossRef T Shiba, M Takahashi, T Matsumoto, and Y Hori. Pulse waveform analysis in ocular microcirculation by laser speckle flowgraphy in patients with left ventricular systolic and diastolic dysfunction. Journal of Vascular Research, 55(6):329–337, 2018.CrossRef
67.
Zurück zum Zitat H Rabbani, MJ Allingham, PS Mettu, SW Cousins, and S Farsiu. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Investigative Ophthalmology & Visual Science, 56(3):1482–1492, 2015.CrossRef H Rabbani, MJ Allingham, PS Mettu, SW Cousins, and S Farsiu. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Investigative Ophthalmology & Visual Science, 56(3):1482–1492, 2015.CrossRef
68.
Zurück zum Zitat S Farsiu, SJ Chiu, RV O’Connell, FA Folgar, E Yuan, JA Izatt, and CA Toth. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014.CrossRef S Farsiu, SJ Chiu, RV O’Connell, FA Folgar, E Yuan, JA Izatt, and CA Toth. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014.CrossRef
69.
Zurück zum Zitat DS Kermany, M Goldbaum, W Cai, CC Valentim, H Liang, SL Baxter, A McKeown, G Yang, X Wu, F Yan, and J Dong. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.CrossRef DS Kermany, M Goldbaum, W Cai, CC Valentim, H Liang, SL Baxter, A McKeown, G Yang, X Wu, F Yan, and J Dong. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.CrossRef
70.
Zurück zum Zitat J Staal, MD Abràmoff, M Niemeijer, MA Viergever, and B van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):501–509, 2004.CrossRef J Staal, MD Abràmoff, M Niemeijer, MA Viergever, and B van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):501–509, 2004.CrossRef
72.
Zurück zum Zitat AD Hoover, V Kouznetsova, and M Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203–210, 2000.CrossRef AD Hoover, V Kouznetsova, and M Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203–210, 2000.CrossRef
74.
Zurück zum Zitat Y Zheng, MHA Hijazi, and F Coenen. Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Investigative Ophthalmology & Visual Science, 53(13):8310–8318, 2012.CrossRef Y Zheng, MHA Hijazi, and F Coenen. Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Investigative Ophthalmology & Visual Science, 53(13):8310–8318, 2012.CrossRef
75.
Zurück zum Zitat DJJ Farnell, FN Hatfield, P Knox, M Reakes, S Spencer, D Parry, and SP Harding. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute, 345(7):748–765, 2008.MATHCrossRef DJJ Farnell, FN Hatfield, P Knox, M Reakes, S Spencer, D Parry, and SP Harding. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute, 345(7):748–765, 2008.MATHCrossRef
77.
Zurück zum Zitat T Kauppi, V Kalesnykiene, JK Kamarainen, L Lensu, I Sorri, H Uusitalo, H Kälviäinen, and J Pietilä. DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, 73, 2006. T Kauppi, V Kalesnykiene, JK Kamarainen, L Lensu, I Sorri, H Uusitalo, H Kälviäinen, and J Pietilä. DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, 73, 2006.
78.
Zurück zum Zitat G Quellec, M Lamard, PM Josselin, G Cazuguel, B Cochener, and C Roux. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on Medical Imaging, 27(9):1230–41, 2008.CrossRef G Quellec, M Lamard, PM Josselin, G Cazuguel, B Cochener, and C Roux. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on Medical Imaging, 27(9):1230–41, 2008.CrossRef
79.
Zurück zum Zitat E Decencière, X Zhang, G Cazuguel, B Lay, B Cochener, C Trone, P Gain, R Ordonez, P Massin, A Erginay, et al. Feedback on a publicly distributed image database: The Messidor database. Image Analysis & Stereology, 33(3):231–234, 2014.MATHCrossRef E Decencière, X Zhang, G Cazuguel, B Lay, B Cochener, C Trone, P Gain, R Ordonez, P Massin, A Erginay, et al. Feedback on a publicly distributed image database: The Messidor database. Image Analysis & Stereology, 33(3):231–234, 2014.MATHCrossRef
80.
Zurück zum Zitat B Al-Diri, A Hunter, D Steel, M Habib, T Hudaib, and S Berry. A reference data set for retinal vessel profiles. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2262–2265, 2008. B Al-Diri, A Hunter, D Steel, M Habib, T Hudaib, and S Berry. A reference data set for retinal vessel profiles. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2262–2265, 2008.
82.
Zurück zum Zitat M Ortega, N Barreira, J Novo, MG Penedo, A Pose-Reino, and F Gómez-Ulla. Sirius: a web-based system for retinal image analysis. International Journal of Medical Informatics, 79(10):722–732, 2010.CrossRef M Ortega, N Barreira, J Novo, MG Penedo, A Pose-Reino, and F Gómez-Ulla. Sirius: a web-based system for retinal image analysis. International Journal of Medical Informatics, 79(10):722–732, 2010.CrossRef
84.
Zurück zum Zitat A Budai, R Bock, A Maier, J Hornegger, and G Michelson. Robust vessel segmentation in fundus images. International Journal of Biomedical Imaging, 2013. A Budai, R Bock, A Maier, J Hornegger, and G Michelson. Robust vessel segmentation in fundus images. International Journal of Biomedical Imaging, 2013.
86.
Zurück zum Zitat S Holm, G Russell, V Nourrit, and N McLoughlin. DR HAGIS – a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4(1):014503, 2017.CrossRef S Holm, G Russell, V Nourrit, and N McLoughlin. DR HAGIS – a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4(1):014503, 2017.CrossRef
87.
Zurück zum Zitat G Quellec, K Charrière, Y Boudi, B Cochener, and M Lamard. Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39:178–193, 2017.CrossRef G Quellec, K Charrière, Y Boudi, B Cochener, and M Lamard. Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39:178–193, 2017.CrossRef
88.
Zurück zum Zitat N Patton, TM Aslam, T MacGillivray, IJ Deary, B Dhillon, RH Eikelboom, K Yogesan, and IJ Constable. Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research, 25(1):99–127, 2006.CrossRef N Patton, TM Aslam, T MacGillivray, IJ Deary, B Dhillon, RH Eikelboom, K Yogesan, and IJ Constable. Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research, 25(1):99–127, 2006.CrossRef
89.
Zurück zum Zitat MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. Blood vessel segmentation methodologies in retinal images–A survey. Computer Methods and Programs in Biomedicine, 108(1):407–433, 2012.CrossRef MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. Blood vessel segmentation methodologies in retinal images–A survey. Computer Methods and Programs in Biomedicine, 108(1):407–433, 2012.CrossRef
90.
Zurück zum Zitat M Zhou, K Jin, S Wang, J Ye, and D Qian. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3):521–527, 2018.CrossRef M Zhou, K Jin, S Wang, J Ye, and D Qian. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3):521–527, 2018.CrossRef
91.
Zurück zum Zitat AF Frangi, WJ Niessen, KL Vincken, and MA Viergever. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 1496:130–137, 1998. AF Frangi, WJ Niessen, KL Vincken, and MA Viergever. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 1496:130–137, 1998.
92.
Zurück zum Zitat PTH Truc, MAU Khan, YK Lee, S Lee, and TS Kim. Vessel enhancement filter using directional filter bank. Computer Vision and Image Understanding, 113(1):101–112, 2009.CrossRef PTH Truc, MAU Khan, YK Lee, S Lee, and TS Kim. Vessel enhancement filter using directional filter bank. Computer Vision and Image Understanding, 113(1):101–112, 2009.CrossRef
93.
Zurück zum Zitat F Bunyak, K Palaniappan, O Glinskii, V Glinskii, V Glinsky, and V Huxley. Epifluorescence-based quantitative microvasculature remodeling using geodesic level-sets and shape-based evolution. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3134–3137, 2008. F Bunyak, K Palaniappan, O Glinskii, V Glinskii, V Glinsky, and V Huxley. Epifluorescence-based quantitative microvasculature remodeling using geodesic level-sets and shape-based evolution. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3134–3137, 2008.
94.
Zurück zum Zitat M Liao, YQ Zhao, XH Wang, and PS Dai. Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58:56–62, 2014.CrossRef M Liao, YQ Zhao, XH Wang, and PS Dai. Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58:56–62, 2014.CrossRef
95.
Zurück zum Zitat C Canero and P Radeva. Vesselness enhancement diffusion. Pattern Recognition Letters, 24(16):3141–3151, 2003.CrossRef C Canero and P Radeva. Vesselness enhancement diffusion. Pattern Recognition Letters, 24(16):3141–3151, 2003.CrossRef
96.
Zurück zum Zitat VBS Prasath, R Pelapur, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multiscale tensor anisotropic filtering of fluorescence microscopy for denoising microvasculature. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 540–543, 2015. VBS Prasath, R Pelapur, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multiscale tensor anisotropic filtering of fluorescence microscopy for denoising microvasculature. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 540–543, 2015.
97.
Zurück zum Zitat R Pelapur, VBS Prasath, F Bunyak, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multi-focus image fusion using epifluorescence microscopy for robust vascular segmentation. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4735–4738, 2014. R Pelapur, VBS Prasath, F Bunyak, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multi-focus image fusion using epifluorescence microscopy for robust vascular segmentation. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4735–4738, 2014.
98.
Zurück zum Zitat YM Kassim, VBS Prasath, R Pelapur, OV Glinskii, RJ Maude, VV Glinsky, VH Huxley, and K Palaniappan. Random forests for dura mater microvasculature segmentation using epifluorescence images. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2901–2904, 2016. YM Kassim, VBS Prasath, R Pelapur, OV Glinskii, RJ Maude, VV Glinsky, VH Huxley, and K Palaniappan. Random forests for dura mater microvasculature segmentation using epifluorescence images. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2901–2904, 2016.
99.
Zurück zum Zitat YM Kassim and K Palaniappan. Extracting retinal vascular networks using deep learning architecture. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1170–1174, 2017. YM Kassim and K Palaniappan. Extracting retinal vascular networks using deep learning architecture. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1170–1174, 2017.
100.
Zurück zum Zitat YM Kassim, VBS Prasath, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Microvasculature segmentation of arterioles using deep CNN. In IEEE International Conference on Image Processing (ICIP), pages 580–584, 2017. YM Kassim, VBS Prasath, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Microvasculature segmentation of arterioles using deep CNN. In IEEE International Conference on Image Processing (ICIP), pages 580–584, 2017.
101.
Zurück zum Zitat M Niemeijer, J Staal, B van Ginneken, M Loog, and MD Abramoff. Comparative study of retinal vessel segmentation methods on a new publicly available database. In Medical Imaging: Image Processing, volume 5370, pages 648–657. International Society for Optics and Photonics, 2004. M Niemeijer, J Staal, B van Ginneken, M Loog, and MD Abramoff. Comparative study of retinal vessel segmentation methods on a new publicly available database. In Medical Imaging: Image Processing, volume 5370, pages 648–657. International Society for Optics and Photonics, 2004.
102.
Zurück zum Zitat D Eberly, R Gardner, B Morse, S Pizer, and C Scharlach. Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4(4):353–373, 1994.MATHCrossRef D Eberly, R Gardner, B Morse, S Pizer, and C Scharlach. Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4(4):353–373, 1994.MATHCrossRef
103.
Zurück zum Zitat AM Lopez, F Lumbreras, J Serrat, and JJ Villanueva. Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):327–335, 1999.CrossRef AM Lopez, F Lumbreras, J Serrat, and JJ Villanueva. Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):327–335, 1999.CrossRef
104.
Zurück zum Zitat JBA Maintz, PA van den Elsen, and MA Viergever. Evaluation of ridge seeking operators for multimodality medical image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):353–365, 1996.CrossRef JBA Maintz, PA van den Elsen, and MA Viergever. Evaluation of ridge seeking operators for multimodality medical image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):353–365, 1996.CrossRef
105.
Zurück zum Zitat T Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):77–116, 1998. T Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):77–116, 1998.
106.
Zurück zum Zitat Y Sato, S Nakajima, H Atsumi, T Koller, G Gerig, S Yoshida, and R Kikinis. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2):143–168, 1998.CrossRef Y Sato, S Nakajima, H Atsumi, T Koller, G Gerig, S Yoshida, and R Kikinis. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2):143–168, 1998.CrossRef
107.
Zurück zum Zitat C Lorenz, IC Carlsen, TM Buzug, C Fassnacht, and J Weese. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Proceedings of CVRMed-MRCAS, pages 233–242, 1997. C Lorenz, IC Carlsen, TM Buzug, C Fassnacht, and J Weese. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Proceedings of CVRMed-MRCAS, pages 233–242, 1997.
108.
Zurück zum Zitat K Krissian, G Malandain, N Ayache, R Vaillant, and Y Trousset. Model-based detection of tubular structures in 3D images. Computer Vision Image Understanding, 80(2):130–171, 2000.MATHCrossRef K Krissian, G Malandain, N Ayache, R Vaillant, and Y Trousset. Model-based detection of tubular structures in 3D images. Computer Vision Image Understanding, 80(2):130–171, 2000.MATHCrossRef
109.
Zurück zum Zitat J Zhou, S Chang, D Metaxas, and L Axel. Vessel boundary extraction using ridge scan-conversion deformable model. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 189– 192, Apr. 2006. J Zhou, S Chang, D Metaxas, and L Axel. Vessel boundary extraction using ridge scan-conversion deformable model. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 189– 192, Apr. 2006.
110.
Zurück zum Zitat I. N. Bronshtein and K. A. Semendyayev. Handbook of mathematics (3rd ed.), chapter Chapter 4.3. Springer-Verlag, London, UK, 1997. I. N. Bronshtein and K. A. Semendyayev. Handbook of mathematics (3rd ed.), chapter Chapter 4.3. Springer-Verlag, London, UK, 1997.
111.
Zurück zum Zitat R Annunziata, A Garzelli, L Ballerini, A Mecocci, and E Trucco. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 20(4):1129–1138, 2016.CrossRef R Annunziata, A Garzelli, L Ballerini, A Mecocci, and E Trucco. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 20(4):1129–1138, 2016.CrossRef
112.
Zurück zum Zitat K BahadarKhan, AA Khaliq, and M Shahid. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PloS One, 11(7):e0158996, 2016.CrossRef K BahadarKhan, AA Khaliq, and M Shahid. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PloS One, 11(7):e0158996, 2016.CrossRef
113.
Zurück zum Zitat S Chaudhuri, S Chatterjee, N Katz, M Nelson, and M Goldbaum. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 8(3):263–269, 1989.CrossRef S Chaudhuri, S Chatterjee, N Katz, M Nelson, and M Goldbaum. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 8(3):263–269, 1989.CrossRef
114.
Zurück zum Zitat M Sofka and CV Stewart. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Transactions on Medical Imaging, 25(12):1531–1546, 2006.CrossRef M Sofka and CV Stewart. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Transactions on Medical Imaging, 25(12):1531–1546, 2006.CrossRef
115.
Zurück zum Zitat WS Oliveira, JV Teixeira, TI Ren, GDC Cavalcanti, and J Sijbers. Unsupervised retinal vessel segmentation using combined filters. PloS One, 11(2):e0149943, 2016.CrossRef WS Oliveira, JV Teixeira, TI Ren, GDC Cavalcanti, and J Sijbers. Unsupervised retinal vessel segmentation using combined filters. PloS One, 11(2):e0149943, 2016.CrossRef
116.
Zurück zum Zitat L Gang, O Chutatape, and SM Krishnan. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Transactions on Biomedical Engineering, 49(2):168–172, 2002.CrossRef L Gang, O Chutatape, and SM Krishnan. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Transactions on Biomedical Engineering, 49(2):168–172, 2002.CrossRef
117.
Zurück zum Zitat JVB Soares, JJG Leandro, RM Cesar, HF Jelinek, and MJ Cree. Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9):1214–1222, 2006.CrossRef JVB Soares, JJG Leandro, RM Cesar, HF Jelinek, and MJ Cree. Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9):1214–1222, 2006.CrossRef
118.
Zurück zum Zitat EM Sigurdhsson, S Valero, JA Benediktsson, J Chanussot, H Talbot, and E Stefansson. Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognition Letters, 47:164–171, 2014.CrossRef EM Sigurdhsson, S Valero, JA Benediktsson, J Chanussot, H Talbot, and E Stefansson. Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognition Letters, 47:164–171, 2014.CrossRef
119.
Zurück zum Zitat L Najman and H Talbot. Mathematical Morphology: From Theory to Applications. John Wiley & Sons, 2013.MATHCrossRef L Najman and H Talbot. Mathematical Morphology: From Theory to Applications. John Wiley & Sons, 2013.MATHCrossRef
120.
Zurück zum Zitat F Zana and JC Klein. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7):1010–1019, 2001.MATHCrossRef F Zana and JC Klein. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7):1010–1019, 2001.MATHCrossRef
121.
Zurück zum Zitat AM Mendonca and A Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging, 25(9):1200–1213, 2006.CrossRef AM Mendonca and A Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging, 25(9):1200–1213, 2006.CrossRef
122.
Zurück zum Zitat K Palaniappan, F Bunyak, S Nath, and J Goffeney. Parallel processing strategies for cell motility and shape analysis. 2009. K Palaniappan, F Bunyak, S Nath, and J Goffeney. Parallel processing strategies for cell motility and shape analysis. 2009.
123.
Zurück zum Zitat M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1988.MATHCrossRef M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1988.MATHCrossRef
125.
Zurück zum Zitat V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1):61–79, 1997.MATHCrossRef V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1):61–79, 1997.MATHCrossRef
126.
Zurück zum Zitat TF Chan and LA Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001.MATHCrossRef TF Chan and LA Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001.MATHCrossRef
127.
Zurück zum Zitat JA Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.MATH JA Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.MATH
128.
Zurück zum Zitat B Al-Diri, A Hunter, and D Steel. An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging, 28(9):1488–1497, 2009.CrossRef B Al-Diri, A Hunter, and D Steel. An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging, 28(9):1488–1497, 2009.CrossRef
129.
Zurück zum Zitat Y Zhao, L Rada, K Chen, SP Harding, and Y Zheng. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9):1797–1807, 2015.CrossRef Y Zhao, L Rada, K Chen, SP Harding, and Y Zheng. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9):1797–1807, 2015.CrossRef
130.
Zurück zum Zitat S Wang, Y Yin, G Cao, B Wei, Y Zheng, and G Yang. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149:708–717, 2015.CrossRef S Wang, Y Yin, G Cao, B Wei, Y Zheng, and G Yang. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149:708–717, 2015.CrossRef
131.
Zurück zum Zitat MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9):2538–2548, 2012.CrossRef MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9):2538–2548, 2012.CrossRef
132.
Zurück zum Zitat E Ricci and R Perfetti. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 26(10):1357–1365, 2007.CrossRef E Ricci and R Perfetti. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 26(10):1357–1365, 2007.CrossRef
133.
Zurück zum Zitat Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436, 2015.CrossRef Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436, 2015.CrossRef
134.
Zurück zum Zitat J Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.CrossRef J Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.CrossRef
135.
Zurück zum Zitat G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi, M Ghafoorian, JAWM van der Laak, B van Ginneken, and CI Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017.CrossRef G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi, M Ghafoorian, JAWM van der Laak, B van Ginneken, and CI Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017.CrossRef
136.
Zurück zum Zitat J Long, E Shelhamer, and T Darrell. Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015. J Long, E Shelhamer, and T Darrell. Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015.
137.
Zurück zum Zitat Z Al-Milaji, I Ersoy, A Hafiane, K Palaniappan, and F Bunyak. Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Pattern Recognition Letters, 119:214–221, 2017.CrossRef Z Al-Milaji, I Ersoy, A Hafiane, K Palaniappan, and F Bunyak. Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Pattern Recognition Letters, 119:214–221, 2017.CrossRef
138.
Zurück zum Zitat A Vedaldi and K Lenc. MatConvNet: Convolutional neural networks for Matlab. In ACM International Conference on Multimedia, pages 689–692, 2015. A Vedaldi and K Lenc. MatConvNet: Convolutional neural networks for Matlab. In ACM International Conference on Multimedia, pages 689–692, 2015.
139.
Zurück zum Zitat P Liskowski and K Krawiec. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11):2369–2380, 2016.CrossRef P Liskowski and K Krawiec. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11):2369–2380, 2016.CrossRef
140.
Zurück zum Zitat H Fu, Y Xu, S Lin, DWK Wong, and J Liu. DeepVessel: Retinal vessel segmentation via deep learning and conditional random field. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 132–139. Springer, 2016. H Fu, Y Xu, S Lin, DWK Wong, and J Liu. DeepVessel: Retinal vessel segmentation via deep learning and conditional random field. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 132–139. Springer, 2016.
141.
Zurück zum Zitat Q Li, B Feng, L Xie, P Liang, H Zhang, and T Wang. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Transactions on Medical Imaging, 35(1):109–118, 2016.CrossRef Q Li, B Feng, L Xie, P Liang, H Zhang, and T Wang. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Transactions on Medical Imaging, 35(1):109–118, 2016.CrossRef
142.
Zurück zum Zitat KK Maninis, J Pont-Tuset, P Arbeláez, and L Van Gool. Deep retinal image understanding. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 140–148. Springer, 2016. KK Maninis, J Pont-Tuset, P Arbeláez, and L Van Gool. Deep retinal image understanding. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 140–148. Springer, 2016.
143.
Zurück zum Zitat Y Lin, H Zhang, and G Hu. Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access, 7:57717–57724, 2018.CrossRef Y Lin, H Zhang, and G Hu. Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access, 7:57717–57724, 2018.CrossRef
144.
Zurück zum Zitat Z Yan, X Yang, and KTT Cheng. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9):1912–1923, 2018.CrossRef Z Yan, X Yang, and KTT Cheng. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9):1912–1923, 2018.CrossRef
145.
Zurück zum Zitat R Zheng, L Liu, S Zhang, C Zheng, F Bunyak, R Xu, B Li, and M Sun. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network. Biomedical Optics Express, 9(10):4863–4878, 2018.CrossRef R Zheng, L Liu, S Zhang, C Zheng, F Bunyak, R Xu, B Li, and M Sun. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network. Biomedical Optics Express, 9(10):4863–4878, 2018.CrossRef
146.
Zurück zum Zitat YA Tolias and SM Panas. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17(2):263–273, 1998.CrossRef YA Tolias and SM Panas. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17(2):263–273, 1998.CrossRef
147.
Zurück zum Zitat O Chutatape, L Zheng, and SM Krishnan. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), volume 6, pages 3144–3149, 1998. O Chutatape, L Zheng, and SM Krishnan. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), volume 6, pages 3144–3149, 1998.
148.
Zurück zum Zitat A Can, H Shen, JN Turner, HL Tanenbaum, and B Roysam. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3(2):125–138, 1999.CrossRef A Can, H Shen, JN Turner, HL Tanenbaum, and B Roysam. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3(2):125–138, 1999.CrossRef
149.
Zurück zum Zitat M Vlachos and E Dermatas. Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics, 34(3):213–227, 2010.CrossRef M Vlachos and E Dermatas. Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics, 34(3):213–227, 2010.CrossRef
150.
Zurück zum Zitat J Zhang, H Li, Q Nie, and L Cheng. A retinal vessel boundary tracking method based on bayesian theory and multi-scale line detection. Computerized Medical Imaging and Graphics, 38(6):517–525, 2014.CrossRef J Zhang, H Li, Q Nie, and L Cheng. A retinal vessel boundary tracking method based on bayesian theory and multi-scale line detection. Computerized Medical Imaging and Graphics, 38(6):517–525, 2014.CrossRef
151.
Zurück zum Zitat F Benmansour and LD Cohen. Tubular structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 92(2):192–210, 2011.CrossRef F Benmansour and LD Cohen. Tubular structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 92(2):192–210, 2011.CrossRef
152.
Zurück zum Zitat B Obara, M Fricker, D Gavaghan, and V Grau. Contrast-independent curvilinear structure detection in biomedical images. IEEE Transactions on Image Processing, 21(5):2572–2581, 2012.MathSciNetMATHCrossRef B Obara, M Fricker, D Gavaghan, and V Grau. Contrast-independent curvilinear structure detection in biomedical images. IEEE Transactions on Image Processing, 21(5):2572–2581, 2012.MathSciNetMATHCrossRef
154.
Zurück zum Zitat L Acciai, P Soda, and G Iannello. Automated neuron tracing methods: An updated account. Neuroinformatics, 14(4):353–367, 2016.CrossRef L Acciai, P Soda, and G Iannello. Automated neuron tracing methods: An updated account. Neuroinformatics, 14(4):353–367, 2016.CrossRef
155.
Zurück zum Zitat A Bhuiyan, B Nath, J Chua, and K Ramamohanarao. Automatic detection of vascular bifurcations and cross-overs from color retinal fundus images. In IEEE International Conference on Signal-Image Technologies and Internet-Based Systems, pages 711–718, 2007. A Bhuiyan, B Nath, J Chua, and K Ramamohanarao. Automatic detection of vascular bifurcations and cross-overs from color retinal fundus images. In IEEE International Conference on Signal-Image Technologies and Internet-Based Systems, pages 711–718, 2007.
156.
Zurück zum Zitat D Calvo, M Ortega, MG Penedo, and J Rouco. Automatic detection and characterisation of retinal vessel tree bifurcations and cross-overs in eye fundus images. Computer Methods and Programs in Biomedicine, 103(1):28–38, 2011.CrossRef D Calvo, M Ortega, MG Penedo, and J Rouco. Automatic detection and characterisation of retinal vessel tree bifurcations and cross-overs in eye fundus images. Computer Methods and Programs in Biomedicine, 103(1):28–38, 2011.CrossRef
157.
Zurück zum Zitat J De, L Cheng, X Zhang, F Lin, H Li, KH Ong, W Yu, Y Yu, and S Ahmed. A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Transactions on Medical Imaging, 35(1):257–272, 2016.CrossRef J De, L Cheng, X Zhang, F Lin, H Li, KH Ong, W Yu, Y Yu, and S Ahmed. A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Transactions on Medical Imaging, 35(1):257–272, 2016.CrossRef
158.
Zurück zum Zitat QP Lau, ML Lee, W Hsu, TY Wong, EYK Ng, UR Acharya, A Campilo, and JS Suri. The Singapore eye vessel assessment system. Image Analysis and Modeling in Ophthalmology, pages 143–160, 2014. QP Lau, ML Lee, W Hsu, TY Wong, EYK Ng, UR Acharya, A Campilo, and JS Suri. The Singapore eye vessel assessment system. Image Analysis and Modeling in Ophthalmology, pages 143–160, 2014.
159.
Zurück zum Zitat O Smedby, N Högman, S Nilsson, U Erikson, AG Olsson, and G Walldius. Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. Journal of Vascular Research, 30(4):181–191, 1993.CrossRef O Smedby, N Högman, S Nilsson, U Erikson, AG Olsson, and G Walldius. Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. Journal of Vascular Research, 30(4):181–191, 1993.CrossRef
160.
Zurück zum Zitat E Bullitt, G Gerig, SM Pizer, W Lin, and SR Aylward. Measuring tortuosity of the intracerebral vasculature. IEEE Transactions on Medical Imaging, 22(9):1163–1171, 2003.CrossRef E Bullitt, G Gerig, SM Pizer, W Lin, and SR Aylward. Measuring tortuosity of the intracerebral vasculature. IEEE Transactions on Medical Imaging, 22(9):1163–1171, 2003.CrossRef
161.
Zurück zum Zitat Emanuele Trucco, Hind Azegrouz, and Baljean Dhillon. Modeling the tortuosity of retinal vessels: Does caliber play a role? IEEE Transactions on Biomedical Engineering, 57(9):2239–2247, 2010.CrossRef Emanuele Trucco, Hind Azegrouz, and Baljean Dhillon. Modeling the tortuosity of retinal vessels: Does caliber play a role? IEEE Transactions on Biomedical Engineering, 57(9):2239–2247, 2010.CrossRef
162.
Zurück zum Zitat S Lorthois, F Lauwers, and F Cassot. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. Microvascular Research, 91:99–109, 2014.CrossRef S Lorthois, F Lauwers, and F Cassot. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. Microvascular Research, 91:99–109, 2014.CrossRef
Metadaten
Titel
Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems
verfasst von
Kannappan Palaniappan
Filiz Bunyak
Shyam S. Chaurasia
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-25886-3_22

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.