Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2018

14.06.2018 | INDUSTRIAL APPLICATION

Image-based truss recognition for density-based topology optimization approach

verfasst von: Jean-François Gamache, Aurelian Vadean, Émeric Noirot-Nérin, Dominique Beaini, Sofiane Achiche

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology optimization is a tool that supports the creativity of structural-designers and is used in various industries, from automotive to aeronautics, to reduce design iterations towards obtaining the optimal structure layout. However, this tool requires both time and experience to interpret the results into manufacturable and reliable structure layout. To improve this aspect, an interpretation support tool is being developed by our research team based on industrial knowledge and axiomatic design principles. This design tool will be very useful for aircraft structure development, for instance, as it aims to help the structural designer in the conception of stiffened panels. The tool has been divided into three modules: feature recognition, feature analysis and design support. This paper presents the first of the three modules that identifies the trusses of the optimized topology in terms of truss recognition algorithms. The purpose of the truss recognition algorithm is to translate the densities of the element of the optimized topology (low-level abstraction) to a skeletal structure (high-level abstraction) that contains nodes and branches that describe the same topology as the optimized topology. It should also ensure that the structural skeleton retains connectivity with loads and boundary conditions. The information may then be used by the design support tool for analysis, comparison, decision-making, design and optimization purposes. To do so, a novel image-based method using a binary skeleton is proposed. For this work, we identified multiple limitations existing in similar solutions and we mitigated them. Therefore, a new skeletonization method is proposed, which is specifically designed for truss recognition in the optimized topology. The capabilities of the skeletonization method are demonstrated by comparing it with existing methods, and the truss recognition algorithm is used with a test case exhibiting the algorithm’s capabilities on an airplane wing box rib.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Altair (2017) Release 2017.2.0. Altair Engineering, Detroit Altair (2017) Release 2017.2.0. Altair Engineering, Detroit
Zurück zum Zitat Arcelli C, Cordella L, Levialdi S (1975) Parallel thinning of binary pictures. Electron Lett 11(7):148CrossRef Arcelli C, Cordella L, Levialdi S (1975) Parallel thinning of binary pictures. Electron Lett 11(7):148CrossRef
Zurück zum Zitat Barbieri L, Bruno F, Muzzupappa M, Cugini U (2008) Design automation tools as a support for knowledge management in topology optimization. In: ASME 2008 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 1227–1234 Barbieri L, Bruno F, Muzzupappa M, Cugini U (2008) Design automation tools as a support for knowledge management in topology optimization. In: ASME 2008 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 1227–1234
Zurück zum Zitat Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin, HeidelbergCrossRef Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin, HeidelbergCrossRef
Zurück zum Zitat Bremicker M, Chirehdast M, Kikuchi N, Papalambros P (1991) Integrated topology and shape optimization in structural design. J Struct Mech 19(4):551 Bremicker M, Chirehdast M, Kikuchi N, Papalambros P (1991) Integrated topology and shape optimization in structural design. J Struct Mech 19(4):551
Zurück zum Zitat Bruhn EF (1973) Analysis and design of flight vehicle structures. G.W. Jacobs, Philadelphia Bruhn EF (1973) Analysis and design of flight vehicle structures. G.W. Jacobs, Philadelphia
Zurück zum Zitat Buchanan S (2007) Development of a wingbox rib for a passenger jet aircraft using design optimization and constrained to traditional design and manufacture requirements. In: Proceedings of CAE technology conference Buchanan S (2007) Development of a wingbox rib for a passenger jet aircraft using design optimization and constrained to traditional design and manufacture requirements. In: Proceedings of CAE technology conference
Zurück zum Zitat Chirehdast M, Papalambros PY (1992) A note on automated detection of mobility of skeletal structures. Comput Struct 45(1):197MathSciNetCrossRef Chirehdast M, Papalambros PY (1992) A note on automated detection of mobility of skeletal structures. Comput Struct 45(1):197MathSciNetCrossRef
Zurück zum Zitat Chou YH, Lin CY (2010) Automated structural optimization system for integrated topology and shape optimization. Struct Multidiscip Optim 40(1):215CrossRef Chou YH, Lin CY (2010) Automated structural optimization system for integrated topology and shape optimization. Struct Multidiscip Optim 40(1):215CrossRef
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1MathSciNetCrossRef
Zurück zum Zitat Dugré A (2014) A design process using topology optimization applied to flat pressurized stiffened panels. Master’s thesis, École Polytechnique de montréal, Montreal Dugré A (2014) A design process using topology optimization applied to flat pressurized stiffened panels. Master’s thesis, École Polytechnique de montréal, Montreal
Zurück zum Zitat Dugré A, Vadean A et al (2016) Challenges of using topology optimization for the design of pressurized stiffened panels. Struct Multidiscip Optim 53(2):303CrossRef Dugré A, Vadean A et al (2016) Challenges of using topology optimization for the design of pressurized stiffened panels. Struct Multidiscip Optim 53(2):303CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711MathSciNetCrossRef Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711MathSciNetCrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. Comput Methods Appl Mech Eng 272:354CrossRef Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. Comput Methods Appl Mech Eng 272:354CrossRef
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014b) Explicit feature control in structural topology optimization via level set method. J Appl Mech 81(8):081009CrossRef Guo X, Zhang W, Zhong W (2014b) Explicit feature control in structural topology optimization via level set method. J Appl Mech 81(8):081009CrossRef
Zurück zum Zitat Hsu YL, Hsu MS, Chen CT (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049CrossRef Hsu YL, Hsu MS, Chen CT (2001) Interpreting results from topology optimization using density contours. Comput Struct 79(10):1049CrossRef
Zurück zum Zitat Huang X, Xie Y (2010) Evolutionary topology optimization of continuum structures. Wiley, ChichesterCrossRef Huang X, Xie Y (2010) Evolutionary topology optimization of continuum structures. Wiley, ChichesterCrossRef
Zurück zum Zitat Inc AE (2016) Optistruct User’s Guide. Altair. Topography Optimization Inc AE (2016) Optistruct User’s Guide. Altair. Topography Optimization
Zurück zum Zitat Johnsen S (2013) Structural topology optimization. Master’s thesis, Norwegian University of Science and Technology Johnsen S (2013) Structural topology optimization. Master’s thesis, Norwegian University of Science and Technology
Zurück zum Zitat Koguchi A, Kikuchi N (2006) A surface reconstruction algorithm for topology optimization. Engineering with Computers 22(1):1CrossRef Koguchi A, Kikuchi N (2006) A surface reconstruction algorithm for topology optimization. Engineering with Computers 22(1):1CrossRef
Zurück zum Zitat Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference. Albany, pp 2004– 4481 Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference. Albany, pp 2004– 4481
Zurück zum Zitat Larsen S, Jensen CG (2009) Converting topology optimization results into parametric CAD models. Comput-Aided Des Applic 6(3):407CrossRef Larsen S, Jensen CG (2009) Converting topology optimization results into parametric CAD models. Comput-Aided Des Applic 6(3):407CrossRef
Zurück zum Zitat Lin CY, Chou YH (2008) Automated structural optimization system for integrated topology and shape optimization. J Chin Inst Eng 31(5):745CrossRef Lin CY, Chou YH (2008) Automated structural optimization system for integrated topology and shape optimization. J Chin Inst Eng 31(5):745CrossRef
Zurück zum Zitat Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161CrossRef Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161CrossRef
Zurück zum Zitat Mandhyan A, Srivastava G, Krishnamoorthi S (2017) A novel method for prediction of truss geometry from topology optimization. Engineering with Computers 33(1):95CrossRef Mandhyan A, Srivastava G, Krishnamoorthi S (2017) A novel method for prediction of truss geometry from topology optimization. Engineering with Computers 33(1):95CrossRef
Zurück zum Zitat Mass Y, Amir O (2017) Topology optimization for additive manufacturing: accounting for overhang limitations using a virtual skeleton. Addit Manuf 18:58CrossRef Mass Y, Amir O (2017) Topology optimization for additive manufacturing: accounting for overhang limitations using a virtual skeleton. Addit Manuf 18:58CrossRef
Zurück zum Zitat Mostafavi S, Morales Beltran M, Biloria N (2013) Performance driven design and design information exchange. In: Proceedings of the 31st international conference on education and research in computer aided architectural design in Europe. Education and Research in Computer Aided Architectural Design in Europe, pp 117–126 Mostafavi S, Morales Beltran M, Biloria N (2013) Performance driven design and design information exchange. In: Proceedings of the 31st international conference on education and research in computer aided architectural design in Europe. Education and Research in Computer Aided Architectural Design in Europe, pp 117–126
Zurück zum Zitat Mulani SB, Slemp WC, Kapania RK (2013) EBF3PanelOpt: an optimization framework for curvilinear blade-stiffened panels. Thin-Walled Struct 63:13CrossRef Mulani SB, Slemp WC, Kapania RK (2013) EBF3PanelOpt: an optimization framework for curvilinear blade-stiffened panels. Thin-Walled Struct 63:13CrossRef
Zurück zum Zitat Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306MathSciNetCrossRef Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306MathSciNetCrossRef
Zurück zum Zitat Olason A, Tidman D (2010) Methodology for topology and shape optimization in the design process. Master’s thesis, Chalmers University of Technology Olason A, Tidman D (2010) Methodology for topology and shape optimization in the design process. Master’s thesis, Chalmers University of Technology
Zurück zum Zitat Papalambros PY, Shea K. (2005). In: Antonsson EK, Cagan J (eds) Formal engineering design synthesis. Cambridge University, Cambridge, pp 93–125 Papalambros PY, Shea K. (2005). In: Antonsson EK, Cagan J (eds) Formal engineering design synthesis. Cambridge University, Cambridge, pp 93–125
Zurück zum Zitat Yi G, Kim NH (2017) Identifying boundaries of topology optimization results using basic parametric features. Struct Multidiscip Optim 55(5):1641CrossRef Yi G, Kim NH (2017) Identifying boundaries of topology optimization results using basic parametric features. Struct Multidiscip Optim 55(5):1641CrossRef
Zurück zum Zitat Yildiz A, Öztürk N, Kaya N, Öztürk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25(4):251CrossRef Yildiz A, Öztürk N, Kaya N, Öztürk F (2003) Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 25(4):251CrossRef
Zurück zum Zitat Zhang J, Wang B, Niu F, Cheng G (2015) Design optimization of connection section for concentrated force diffusion. Mech Based Des Struct Mach 43(2):209CrossRef Zhang J, Wang B, Niu F, Cheng G (2015) Design optimization of connection section for concentrated force diffusion. Mech Based Des Struct Mach 43(2):209CrossRef
Zurück zum Zitat Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71MathSciNetCrossRef Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71MathSciNetCrossRef
Metadaten
Titel
Image-based truss recognition for density-based topology optimization approach
verfasst von
Jean-François Gamache
Aurelian Vadean
Émeric Noirot-Nérin
Dominique Beaini
Sofiane Achiche
Publikationsdatum
14.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2028-x

Weitere Artikel der Ausgabe 6/2018

Structural and Multidisciplinary Optimization 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.