Skip to main content

2022 | OriginalPaper | Buchkapitel

Immediate Cortical and Spinal C-Fos Immunoreactivity After ICMS of the Primary Somatosensory Cortex in Rats

verfasst von : V. S. Costa, A. O. B Suassuna, L. Galdino, A. C. Kunicki

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intracortical microstimulation (ICMS) is an invasive stimulation technique through which it is possible to excitate and inhibit the activity of neurons from different cortical regions. The ICMS has been used in the context of neural prostheses targeting the restoration of neurological functions and as possible tactile feedback in brain-machine interfaces. Several protocols of microstimulation have been implemented to stimulate the primary somatosensory cortex (S1). The literature describes the direct effects of ICMS upon the activity of neurons in the stimulated area, though the distribution of the neuronal activity and the indirect effects of that stimulation, that is, those that occur far from the stimulated area, are still not fully described. This study aimed to evaluate the immediate effects of the ICMS on c-Fos cell immunoreactivity upon the stimulated area and the extent of this stimulation in S1, adjacent cortical areas, and also in the spinal cord of rats. It was observed that surrounding the microelectrode implant occurred a lower immunoreactivity extending to \(150{-}200\ \upmu \)m\(^{2}\), however, there was no statistical significance to right and left directions (X\(^{2}\)(4) = 5.00, p = 0.29; X\(^{2}\)(4) = 6.33, p = 0.18). It was followed by a higher number of c-Fos immunoreactive cells between \(250{-}1000\ \upmu \)m from the microelectrode track at the mediolateral directions, being statistically significant to \(500\ \upmu \)m at the rostroventral direction (F(2, 6) = 6.57, p = 0.031). Despite the qualitative differences in the number of immunoreactive cells, no statistically significant differences were observed to M1, S2, and spinal cord areas. This study corroborates with findings of previous research relative to the extent of neuronal activity and immunoreactivity after ICMS, adding that similar patterns of cortical immunoreactivity are seen in non-anesthetized stimulated animals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Venkatraman S, Carmena J (2011) Active sensing of target location encoded by cortical microstimulation. IEEE Trans Neural Syst Rehabil Eng 19:317–324CrossRef Venkatraman S, Carmena J (2011) Active sensing of target location encoded by cortical microstimulation. IEEE Trans Neural Syst Rehabil Eng 19:317–324CrossRef
2.
Zurück zum Zitat Voigt MB, Hubka P, Kral A (2017) Intracortical microstimulation differentially activates cortical layers based on stimulation depth. Brain Stimul 10:684–694CrossRef Voigt MB, Hubka P, Kral A (2017) Intracortical microstimulation differentially activates cortical layers based on stimulation depth. Brain Stimul 10:684–694CrossRef
3.
Zurück zum Zitat Dagnelie G (2008) Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng 10:339–368CrossRef Dagnelie G (2008) Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng 10:339–368CrossRef
4.
Zurück zum Zitat Fallon J, Irvine D, Shepherd R (2008) Cochlear implants and brain plasticity. Hearing Res 238:110–117CrossRef Fallon J, Irvine D, Shepherd R (2008) Cochlear implants and brain plasticity. Hearing Res 238:110–117CrossRef
5.
Zurück zum Zitat Urdaneta M, Koivuniemi A, Otto K (2017) Central nervous system microstimulation: towards selective micro-neuromodulation. Curr Opini Biomed Eng 4:65–77CrossRef Urdaneta M, Koivuniemi A, Otto K (2017) Central nervous system microstimulation: towards selective micro-neuromodulation. Curr Opini Biomed Eng 4:65–77CrossRef
6.
Zurück zum Zitat Venkatraman S, Elkabany K, Long JD, Yao Y, Carmena JM (2008) A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans Biomed Eng 56:15–22CrossRef Venkatraman S, Elkabany K, Long JD, Yao Y, Carmena JM (2008) A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans Biomed Eng 56:15–22CrossRef
7.
Zurück zum Zitat O’Doherty J, Lebedev M, Hanson T, Fitzsimmons N, Nicolelis M (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3:20 O’Doherty J, Lebedev M, Hanson T, Fitzsimmons N, Nicolelis M (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3:20
8.
Zurück zum Zitat Bensmaia S (2015) Biological and bionic hands: natural neural coding and artificial perception. Philos Trans R Soc B: Biol Sci 370:20140209CrossRef Bensmaia S (2015) Biological and bionic hands: natural neural coding and artificial perception. Philos Trans R Soc B: Biol Sci 370:20140209CrossRef
9.
Zurück zum Zitat Dadarlat M, O’doherty J, Sabes P (2015) A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 18:138 Dadarlat M, O’doherty J, Sabes P (2015) A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 18:138
10.
Zurück zum Zitat Tabot G, Dammann J, Berg J et al (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci 110:18279–18284CrossRef Tabot G, Dammann J, Berg J et al (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci 110:18279–18284CrossRef
11.
Zurück zum Zitat Berg J, Dammann J III, Tenore F et al (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21:500–507CrossRef Berg J, Dammann J III, Tenore F et al (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21:500–507CrossRef
12.
Zurück zum Zitat Bensmaia S, Miller L (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15:313 Bensmaia S, Miller L (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15:313
13.
Zurück zum Zitat Romo R, Hernandez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387 Romo R, Hernandez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387
14.
Zurück zum Zitat Romo R, Hernandez A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26:273–278CrossRef Romo R, Hernandez A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26:273–278CrossRef
15.
Zurück zum Zitat Kim S, Callier T, Tabot G, Gaunt R, Tenore F, Bensmaia S (2015) Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc Natl Acad Sci 112:15202–15207CrossRef Kim S, Callier T, Tabot G, Gaunt R, Tenore F, Bensmaia S (2015) Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex. Proc Natl Acad Sci 112:15202–15207CrossRef
16.
Zurück zum Zitat Johnson L, Wander J, Sarma D, Su D, Fetz E, Ojemann J (2013) Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J Neural Eng 10:036021CrossRef Johnson L, Wander J, Sarma D, Su D, Fetz E, Ojemann J (2013) Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J Neural Eng 10:036021CrossRef
17.
Zurück zum Zitat Flesher S, Collinger J, Foldes S, et al (2016) Intracortical microstimulation of human somatosensory cortex. Sci Transl Medic 8:361ra141–361ra141 Flesher S, Collinger J, Foldes S, et al (2016) Intracortical microstimulation of human somatosensory cortex. Sci Transl Medic 8:361ra141–361ra141
18.
Zurück zum Zitat Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis M (2013) A brain-to-brain interface for real-time sharing of sensorimotor information. Sci Rep 3:1319 Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis M (2013) A brain-to-brain interface for real-time sharing of sensorimotor information. Sci Rep 3:1319
19.
Zurück zum Zitat Watson M, Dancause N, Sawan M (2015) Efficient microstimulation of the brain: a parametric approach. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2155–2158 Watson M, Dancause N, Sawan M (2015) Efficient microstimulation of the brain: a parametric approach. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2155–2158
20.
Zurück zum Zitat Watson M, Dancause N, Sawan M (2016) Intracortical microstimulation parameters dictate the amplitude and latency of evoked responses. Brain Stimul 9:276–284CrossRef Watson M, Dancause N, Sawan M (2016) Intracortical microstimulation parameters dictate the amplitude and latency of evoked responses. Brain Stimul 9:276–284CrossRef
21.
Zurück zum Zitat Fox K (2008) Barrel cortex, 1st edn. Cambridge University Press, Cambridge Fox K (2008) Barrel cortex, 1st edn. Cambridge University Press, Cambridge
22.
Zurück zum Zitat Histed M, Ni A, Maunsell J (2013) Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol 103:115–130CrossRef Histed M, Ni A, Maunsell J (2013) Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol 103:115–130CrossRef
23.
Zurück zum Zitat Butovas S, Schwarz C (2003) Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 90:3024–3039CrossRef Butovas S, Schwarz C (2003) Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 90:3024–3039CrossRef
24.
Zurück zum Zitat Tehovnik E, Slocum W (2007) What delay fields tell us about striate cortex. J Neurophysiol 98:559–576CrossRef Tehovnik E, Slocum W (2007) What delay fields tell us about striate cortex. J Neurophysiol 98:559–576CrossRef
25.
Zurück zum Zitat Benali A, Weiler E, Benali Y, Dinse H, Eysel U (2008) Excitation and inhibition jointly regulate cortical reorganization in adult rats. J Neurosci 28:12284–12293CrossRef Benali A, Weiler E, Benali Y, Dinse H, Eysel U (2008) Excitation and inhibition jointly regulate cortical reorganization in adult rats. J Neurosci 28:12284–12293CrossRef
26.
Zurück zum Zitat Diamond M, Von Heimendahl M, Knutsen P M, Kleinfeld D, Ahissar E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9:601 Diamond M, Von Heimendahl M, Knutsen P M, Kleinfeld D, Ahissar E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9:601
27.
Zurück zum Zitat Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Londres Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Londres
28.
Zurück zum Zitat Histed M, Bonin V, Reid C (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522CrossRef Histed M, Bonin V, Reid C (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–522CrossRef
Metadaten
Titel
Immediate Cortical and Spinal C-Fos Immunoreactivity After ICMS of the Primary Somatosensory Cortex in Rats
verfasst von
V. S. Costa
A. O. B Suassuna
L. Galdino
A. C. Kunicki
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_330

Neuer Inhalt