Skip to main content

2022 | OriginalPaper | Buchkapitel

Microglial Response After Chronic Implantation of Epidural Spinal Cord Electrode

verfasst von : A. O. B. Suassuna, J. R. Oliveira, V. S. Costa, C. C. M. Castro, M. S. L. Nascimento, M. F. P. Araújo

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spinal cord stimulation (SCS) is currently used to treat chronic pain and has been shown to be effective in the treatment of other neurological disorders, such as Parkinson’s disease. The electrodes used for SCS are placed adjacent to the nervous tissue and thus can induce inflammation that may interfere with its efficacy. One of our previous studies showed that acute implantation of spinal cord electrodes resulted in substantial microglial activation throughout the transversal sections of the spinal cord at the region of implant, but data on microglial activation after longer periods is still lacking. To investigate microglial activation in the spinal cord after a chronic period of implantation, 3 wistar rats were implanted with SCS electrodes in the epidural space under thoracic vertebra 4 (T4), while 4 animals underwent a sham surgery. Thirty seven days after the surgery, the animals were perfused and spinal cord sections of the implanted region (T4) and regions close (thoracic levels 3 and 5—T3 and T5) and distant to the implanted tissue (cervical level 4—C4 and lumbar level 1—L1) were analyzed by calcium-binding adaptor protein-1 (IBA-1) immunohistochemistry to determine microglial amount and morphology. There was a greater microglial activation at the implant site (T4) and in nearby regions (T3 and T5) in animals of the electrode group. In addition, at T4, the amount of activated microglia was higher at regions in close contact with the electrode than in regions farther from the electrode, with the highest percentage of activated microglia at the dorsal funiculus (18%). To our knowledge, this is the first study describing the microglial activation following chronic implantation of epidural electrodes, and it provides important new information regarding the spinal cord tissue response to chronic implants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Micera S, Caleo M, Chisari C, Hummel Friedhelm C, Alessandra P (2020) Advanced neurotechnologies for the restoration of motor function. Neuron 105:604–620CrossRef Micera S, Caleo M, Chisari C, Hummel Friedhelm C, Alessandra P (2020) Advanced neurotechnologies for the restoration of motor function. Neuron 105:604–620CrossRef
2.
Zurück zum Zitat Warwick K (2018) Neuroengineering and neuroprosthetics. Brain Neurosci Adv 2:2398212818817499 Warwick K (2018) Neuroengineering and neuroprosthetics. Brain Neurosci Adv 2:2398212818817499
3.
Zurück zum Zitat Glannon W (2016) Ethical issues in neuroprosthetics. J Neural Eng 13:CrossRef Glannon W (2016) Ethical issues in neuroprosthetics. J Neural Eng 13:CrossRef
4.
Zurück zum Zitat Eldahan Khalid C, Rabchevsky Alexander G (2018) Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci 209:59–70CrossRef Eldahan Khalid C, Rabchevsky Alexander G (2018) Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci 209:59–70CrossRef
5.
Zurück zum Zitat Mooney Ronan A, John C, Stinear Cathy M, Byblow Winston D (2020) Neurophysiology of motor skill learning in chronic stroke. Clin Neurophysiol 131:791–798CrossRef Mooney Ronan A, John C, Stinear Cathy M, Byblow Winston D (2020) Neurophysiology of motor skill learning in chronic stroke. Clin Neurophysiol 131:791–798CrossRef
6.
Zurück zum Zitat Rancic V, Rawal B, Panaitescu B, Ruangkittisakul A, Ballanyi K (2018) Suction electrode recording in locus coeruleus of newborn rat brain slices reveals network bursting comprising summated non-synchronous spiking. Neurosci Lett 671:103–107CrossRef Rancic V, Rawal B, Panaitescu B, Ruangkittisakul A, Ballanyi K (2018) Suction electrode recording in locus coeruleus of newborn rat brain slices reveals network bursting comprising summated non-synchronous spiking. Neurosci Lett 671:103–107CrossRef
7.
Zurück zum Zitat Maiti TK, Konar S, Bir S, Kalakoti P, Nanda A (2016) Intra-operative micro-electrode recording in functional neurosurgery: past, present, future. J Clin Neurosci 32:166–172CrossRef Maiti TK, Konar S, Bir S, Kalakoti P, Nanda A (2016) Intra-operative micro-electrode recording in functional neurosurgery: past, present, future. J Clin Neurosci 32:166–172CrossRef
8.
Zurück zum Zitat Macerollo A, Zrinzo L, Akram H, Foltynie T, Limousin P (2020) Subthalamic nucleus deep brain stimulation for Parkinson’s disease: current trends and future directions. Expert Rev Med Dev Macerollo A, Zrinzo L, Akram H, Foltynie T, Limousin P (2020) Subthalamic nucleus deep brain stimulation for Parkinson’s disease: current trends and future directions. Expert Rev Med Dev
9.
Zurück zum Zitat Isagulyan E, Slavin K, Konovalov N et al (2020) Spinal cord stimulation in chronic pain: technical advances. Korean J Pain 33:99CrossRef Isagulyan E, Slavin K, Konovalov N et al (2020) Spinal cord stimulation in chronic pain: technical advances. Korean J Pain 33:99CrossRef
10.
Zurück zum Zitat Shealy C, Norman Mortimer J, Thomas Reswick James B (1967) Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 46:489–491 Shealy C, Norman Mortimer J, Thomas Reswick James B (1967) Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 46:489–491
11.
Zurück zum Zitat Duy Phan Q, Anderson William S (2018) Focus: medical technology: two surgeries do not always make a right: spinal cord stimulation for failed back surgery syndrome. Yale J Biol Med 91:323 Duy Phan Q, Anderson William S (2018) Focus: medical technology: two surgeries do not always make a right: spinal cord stimulation for failed back surgery syndrome. Yale J Biol Med 91:323
12.
Zurück zum Zitat Lawrence Poree, Elliot Krames, Jason Pope, Deer Timothy R, Levy Robert, Schultz Louise (2013) Spinal cord stimulation as treatment for complex regional pain syndrome should be considered earlier than last resort therapy. Neuromodulation: Technol Neural Interface 16:125–141 Lawrence Poree, Elliot Krames, Jason Pope, Deer Timothy R, Levy Robert, Schultz Louise (2013) Spinal cord stimulation as treatment for complex regional pain syndrome should be considered earlier than last resort therapy. Neuromodulation: Technol Neural Interface 16:125–141
13.
Zurück zum Zitat Yampolsky C, Hem S, Bendersky D (2012) Dorsal column stimulator applications. Surg Neurol Int 3:S275CrossRef Yampolsky C, Hem S, Bendersky D (2012) Dorsal column stimulator applications. Surg Neurol Int 3:S275CrossRef
14.
Zurück zum Zitat Gill Megan L, Grahn Peter J, Calvert Jonathan S et al (2018) Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 24:1677–1682CrossRef Gill Megan L, Grahn Peter J, Calvert Jonathan S et al (2018) Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 24:1677–1682CrossRef
15.
Zurück zum Zitat Russo M, Santarelli DM, Smith U (2018) Cervical spinal cord stimulation for the treatment of essential tremor. Case Rep 2018:bcr–2018 Russo M, Santarelli DM, Smith U (2018) Cervical spinal cord stimulation for the treatment of essential tremor. Case Rep 2018:bcr–2018
16.
Zurück zum Zitat Yadav Amol P, Nicolelis Miguel AL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Movement Disorders 32:820–832CrossRef Yadav Amol P, Nicolelis Miguel AL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Movement Disorders 32:820–832CrossRef
17.
Zurück zum Zitat Sdrulla Andrei D, Yun G, Raja Srinivasa N (2018) Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract 18:1048–1067CrossRef Sdrulla Andrei D, Yun G, Raja Srinivasa N (2018) Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract 18:1048–1067CrossRef
18.
Zurück zum Zitat Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211CrossRef Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211CrossRef
19.
Zurück zum Zitat Szabo M, Gulya K (2013) Development of the microglial phenotype in culture. Neuroscience 241:280–295CrossRef Szabo M, Gulya K (2013) Development of the microglial phenotype in culture. Neuroscience 241:280–295CrossRef
20.
Zurück zum Zitat Suzumura A, Marunouchi T, Yamamoto H (1991) Morphological transformation of microglia in vitro. Brain Res 545:301–306CrossRef Suzumura A, Marunouchi T, Yamamoto H (1991) Morphological transformation of microglia in vitro. Brain Res 545:301–306CrossRef
21.
Zurück zum Zitat Hristovska I, Pascual O (2016) Deciphering resting microglial morphology and process motility from a synaptic prospect. Front Integr Neurosci 9:73CrossRef Hristovska I, Pascual O (2016) Deciphering resting microglial morphology and process motility from a synaptic prospect. Front Integr Neurosci 9:73CrossRef
22.
Zurück zum Zitat Prasad A, Xue Q-S, Sankar V et al (2012) Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 9:CrossRef Prasad A, Xue Q-S, Sankar V et al (2012) Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 9:CrossRef
23.
Zurück zum Zitat Freire MAM, Morya E, Faber J et al (2011) Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PloS one 6 Freire MAM, Morya E, Faber J et al (2011) Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PloS one 6
24.
Zurück zum Zitat Alan Degenhart D, Eles J, Dum R et al (2016) Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng 13:CrossRef Alan Degenhart D, Eles J, Dum R et al (2016) Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng 13:CrossRef
25.
Zurück zum Zitat de Suassuna AOB, Silva MJC, Oliveira JR et al (2019) Microglial activation after acute spinal cord electrode implant. In: XXVI Brazilian congress on biomedical engineering, 605–610 de Suassuna AOB, Silva MJC, Oliveira JR et al (2019) Microglial activation after acute spinal cord electrode implant. In: XXVI Brazilian congress on biomedical engineering, 605–610
26.
Zurück zum Zitat Yano KM, Netto SPN, Silva MJC et al (2019) SciTable: a 3D printed surgical table for spinal cord implant procedures. In: XXVI Brazilian congress on biomedical engineering. Springer, 623–628 Yano KM, Netto SPN, Silva MJC et al (2019) SciTable: a 3D printed surgical table for spinal cord implant procedures. In: XXVI Brazilian congress on biomedical engineering. Springer, 623–628
27.
Zurück zum Zitat Sengul G, Watson C, Tanaka I (2013) Atlas of the spinal cord. Elsevier, London Sengul G, Watson C, Tanaka I (2013) Atlas of the spinal cord. Elsevier, London
28.
Zurück zum Zitat Zhang Fuxing, Vadakkan Kujumon I, Kim Susan S, Long-Jun Wu, Yuze Shang, Min Zhuo (2008) Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse. Molec Pain 4:15 Zhang Fuxing, Vadakkan Kujumon I, Kim Susan S, Long-Jun Wu, Yuze Shang, Min Zhuo (2008) Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse. Molec Pain 4:15
29.
Zurück zum Zitat Ersen A, Elkabes S, Freedman David S, Mesut Sahin (2015) Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 12:CrossRef Ersen A, Elkabes S, Freedman David S, Mesut Sahin (2015) Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 12:CrossRef
30.
Zurück zum Zitat Salatino Joseph W, Ludwig Kip A, Kozai Takashi DY, Purcell Erin K (2017) Glial responses to implanted electrodes in the brain. Nat Biomed Eng 1:862–877CrossRef Salatino Joseph W, Ludwig Kip A, Kozai Takashi DY, Purcell Erin K (2017) Glial responses to implanted electrodes in the brain. Nat Biomed Eng 1:862–877CrossRef
31.
Zurück zum Zitat Polikov Vadim S, Tresco Patrick A, Reichert William M (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18CrossRef Polikov Vadim S, Tresco Patrick A, Reichert William M (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18CrossRef
32.
Zurück zum Zitat Olson Julie K (2010) Immune response by microglia in the spinal cord. Ann New York Acad Sci 1198:271–278CrossRef Olson Julie K (2010) Immune response by microglia in the spinal cord. Ann New York Acad Sci 1198:271–278CrossRef
Metadaten
Titel
Microglial Response After Chronic Implantation of Epidural Spinal Cord Electrode
verfasst von
A. O. B. Suassuna
J. R. Oliveira
V. S. Costa
C. C. M. Castro
M. S. L. Nascimento
M. F. P. Araújo
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_329

Neuer Inhalt