Skip to main content

2008 | OriginalPaper | Buchkapitel

32. Implantable Biomedical Devices and Biologically Inspired Materials

verfasst von : Hugh Bruck, Dr.

Erschienen in: Springer Handbook of Experimental Solid Mechanics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental mechanics is playing an important role in the development of new implantable biomedical devices through an advanced understanding of the microstructure/property relationship for biocompatible materials and their effect on the structure/performance of these devices. A similar understanding is also being applied to the development of new biologically inspired materials and systems that are analogs of biological counterparts. This chapter attempts to elucidate on the synergy between the research and development activities in these two areas through the application of experimental mechanics. Fundamental information is provided on the motivation for the science and technology required to develop these areas, and the associated contributions being made by the experimental mechanics community. The challenges that are encountered when investigating the unique mechanical behavior and properties of devices, materials, and systems are also presented. Specific examples are provided to illustrate these issues, and the application of experimental mechanics techniques, such as Photoelasticity, Digital Image Correlation, and Nanoindentation, to understand and characterize them at multiple length scales.
It is the purpose of this chapter to describe the application of experimental mechanics in understanding the mechanics of implantable biomedical devices, as well as biologically inspired materials and systems. In particular, the experimental techniques used to develop this understanding, and the fundamental scientific and technical insight that has been obtained into various aspects of processing/microstructure/property/structure/ performance relationships in these devices, materials, and systems will be reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
32.1.
Zurück zum Zitat H.A. Bruck, J.J. Evans, M. Peterson: The role of mechanics in biological and biologically inspired Materials, Exp. Mech. 42, 361–371 (2002) H.A. Bruck, J.J. Evans, M. Peterson: The role of mechanics in biological and biologically inspired Materials, Exp. Mech. 42, 361–371 (2002)
32.2.
Zurück zum Zitat I. Amato: Stuff: The Materials the World is Made of (Basic Books, New York 1997) I. Amato: Stuff: The Materials the World is Made of (Basic Books, New York 1997)
32.3.
Zurück zum Zitat S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001) S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001)
32.4.
Zurück zum Zitat C. Dry: Procedures developed for self-repair of polymer matrix composite materials, Compos. Struct. 35, 263–269 (1996) C. Dry: Procedures developed for self-repair of polymer matrix composite materials, Compos. Struct. 35, 263–269 (1996)
32.5.
Zurück zum Zitat H.R. Piehler: The future of medicine: biomaterials, MRS Bull. 25, 67–69 (2000) H.R. Piehler: The future of medicine: biomaterials, MRS Bull. 25, 67–69 (2000)
32.6.
Zurück zum Zitat S. Karmat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging, Acta Mater. 52, 2395–2406 (2004) S. Karmat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging, Acta Mater. 52, 2395–2406 (2004)
32.7.
Zurück zum Zitat J.L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S.J. Eppell, M. Tabib-Azar: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces, Mater. Sci. Eng. C 27, 450–468 (2007) J.L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S.J. Eppell, M. Tabib-Azar: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces, Mater. Sci. Eng. C 27, 450–468 (2007)
32.8.
Zurück zum Zitat J.F.V. Vincent: Structural Biomaterials (Princeton Univ. Press, Princeton 1991) J.F.V. Vincent: Structural Biomaterials (Princeton Univ. Press, Princeton 1991)
32.9.
Zurück zum Zitat H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at the nanoscale: lessons from nature, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 5597–2600 H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at the nanoscale: lessons from nature, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 5597–2600
32.10.
Zurück zum Zitat E. Baer, A. Hiltner, A.R. Morgan: Biological and synthetic hierarchical composites, Phys. Today 45, 60–67 (1992) E. Baer, A. Hiltner, A.R. Morgan: Biological and synthetic hierarchical composites, Phys. Today 45, 60–67 (1992)
32.11.
Zurück zum Zitat A.V. Srinivasan, G.K. Haritos, F.L. Hedberg: Biomimetics: advancing man-made materials through guidance from nature, Appl. Mech. Rev. 44, 463–481 (1991) A.V. Srinivasan, G.K. Haritos, F.L. Hedberg: Biomimetics: advancing man-made materials through guidance from nature, Appl. Mech. Rev. 44, 463–481 (1991)
32.12.
Zurück zum Zitat G. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, S. Cowin: The anisotropic Hookeʼs law for cancellous bone and wood, J. Elast. 53, 125–146 (1999)MATH G. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, S. Cowin: The anisotropic Hookeʼs law for cancellous bone and wood, J. Elast. 53, 125–146 (1999)MATH
32.13.
Zurück zum Zitat P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999) P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999)
32.14.
Zurück zum Zitat C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod: Low mechanical signals strengthen bones, Nature 412, 603–604 (2001) C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod: Low mechanical signals strengthen bones, Nature 412, 603–604 (2001)
32.15.
Zurück zum Zitat P.K.D.V. Yarlagadda, M. Chandrasekharan, J.Y.M. Shyan: Recent advances and current developments in tissue scaffolding, Bio-med. Mater. Eng. 15, 159–177 (2005) P.K.D.V. Yarlagadda, M. Chandrasekharan, J.Y.M. Shyan: Recent advances and current developments in tissue scaffolding, Bio-med. Mater. Eng. 15, 159–177 (2005)
32.16.
Zurück zum Zitat S. Saidpour: Assessment of carbon fibre composite fracture fixation plate using finite element analysis, J. Biomed. Eng. 34, 1157–1163 (2006) S. Saidpour: Assessment of carbon fibre composite fracture fixation plate using finite element analysis, J. Biomed. Eng. 34, 1157–1163 (2006)
32.17.
Zurück zum Zitat J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopaedic tissue engineering, Biomaterials 21, 2405–2412 (2000) J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopaedic tissue engineering, Biomaterials 21, 2405–2412 (2000)
32.18.
Zurück zum Zitat R. Pietrabissa, V. Qauglini, T. Villa: Experimental methods in testing of tissues and implants, Meccanica 37, 477–488 (2002) R. Pietrabissa, V. Qauglini, T. Villa: Experimental methods in testing of tissues and implants, Meccanica 37, 477–488 (2002)
32.19.
Zurück zum Zitat G. Heimke, P. Griss: Ceramic implant materials, Med. Biol. Eng. Comput. 18, 503–510 (1980) G. Heimke, P. Griss: Ceramic implant materials, Med. Biol. Eng. Comput. 18, 503–510 (1980)
32.20.
Zurück zum Zitat J.B. Park, R.S. Lakes: Biomaterials (Plenum, New York 1992) J.B. Park, R.S. Lakes: Biomaterials (Plenum, New York 1992)
32.21.
Zurück zum Zitat E.N. Brown, M.L. Peterson, K.J. Grande-Allen: Biological systems and materials: a review of the field of biomechanics and the role of the society for experimental mechanics, Exp. Techn. 2, 21–29 (2006) E.N. Brown, M.L. Peterson, K.J. Grande-Allen: Biological systems and materials: a review of the field of biomechanics and the role of the society for experimental mechanics, Exp. Techn. 2, 21–29 (2006)
32.22.
Zurück zum Zitat A.J. van der Pijl, W. Swieszkowski, H.E.N. Bersee: Design of a wear simulator for in vitro should prostheses testing, Exp. Techn. 5, 45–48 (2004) A.J. van der Pijl, W. Swieszkowski, H.E.N. Bersee: Design of a wear simulator for in vitro should prostheses testing, Exp. Techn. 5, 45–48 (2004)
32.23.
Zurück zum Zitat A.J. Rapoff, W.M. Johnson, S. Venkataraman: Transverse plane shear test fixture for total knee system, Exp. Techn. 3, 37–39 (2003) A.J. Rapoff, W.M. Johnson, S. Venkataraman: Transverse plane shear test fixture for total knee system, Exp. Techn. 3, 37–39 (2003)
32.24.
Zurück zum Zitat R. Oosterom, H.E.N. Bersee: Force controlled fatigue testing of shoulder prostheses, Exp. Techn. 5, 33–37 (2004) R. Oosterom, H.E.N. Bersee: Force controlled fatigue testing of shoulder prostheses, Exp. Techn. 5, 33–37 (2004)
32.25.
Zurück zum Zitat V.L. Roberts: Strain-gage techniques in biomechanics, Exp. Mech. 6, 19A–22A (1966) V.L. Roberts: Strain-gage techniques in biomechanics, Exp. Mech. 6, 19A–22A (1966)
32.26.
Zurück zum Zitat L. Cristofolini, M. Viceconti: Comparison of uniaxial and triaxial rosette gages for strain measurement on the femur, Exp. Mech. 37, 350–354 (1997) L. Cristofolini, M. Viceconti: Comparison of uniaxial and triaxial rosette gages for strain measurement on the femur, Exp. Mech. 37, 350–354 (1997)
32.27.
Zurück zum Zitat C. Franck, S. Hong, S.A. Maskarinee, D.A. Tirrell, G. Ravichandran: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation, Exp. Mech. 47(3), 427–438 (2007) C. Franck, S. Hong, S.A. Maskarinee, D.A. Tirrell, G. Ravichandran: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation, Exp. Mech. 47(3), 427–438 (2007)
32.28.
Zurück zum Zitat A.B. Liggins, W.R. Hardie, J.B. Finlay: The spatial and pressure resolution of Fuji pressure-sensitive films, Exp. Mech. 35, 166–173 (1995) A.B. Liggins, W.R. Hardie, J.B. Finlay: The spatial and pressure resolution of Fuji pressure-sensitive films, Exp. Mech. 35, 166–173 (1995)
32.29.
Zurück zum Zitat R.D. Peindl, M.E. Harrow, P.M. Connor, D.M. Banks, D.R. DʼAlessandro: Photoelastic stress freezing analysis of total shoulder replacement systems, Exp. Mech. 44, 228–234 (2004) R.D. Peindl, M.E. Harrow, P.M. Connor, D.M. Banks, D.R. DʼAlessandro: Photoelastic stress freezing analysis of total shoulder replacement systems, Exp. Mech. 44, 228–234 (2004)
32.30.
Zurück zum Zitat R.J. Nikolai, J.W. Schweiker: Investigation of root-periodontium interface stresses and displacements for orthodontic application, Exp. Mech. 12, 406–413 (1972) R.J. Nikolai, J.W. Schweiker: Investigation of root-periodontium interface stresses and displacements for orthodontic application, Exp. Mech. 12, 406–413 (1972)
32.31.
Zurück zum Zitat H. Vaillancourt, D. McCammond, R.M. Pilliar: Validation of a nonlinear two-dimensional interface element for finite-element analysis, Exp. Mech. 36, 49–54 (1996) H. Vaillancourt, D. McCammond, R.M. Pilliar: Validation of a nonlinear two-dimensional interface element for finite-element analysis, Exp. Mech. 36, 49–54 (1996)
32.32.
Zurück zum Zitat J.F. Dias Rodrigues, H. Lopes, F.Q. de Melo, J.A. Simões: Experimental modal analysis of a synthetic composite femur, Exp. Mech. 44, 29–32 (2004) J.F. Dias Rodrigues, H. Lopes, F.Q. de Melo, J.A. Simões: Experimental modal analysis of a synthetic composite femur, Exp. Mech. 44, 29–32 (2004)
32.33.
Zurück zum Zitat J.-J. Ryu, V. Daval, P. Shrotriya: Onset of surface damage in modular orthopedic implants: influence of normal contact loading and stress-assisted dissolution, Exp. Mech. 47(3), 395–403 (2007) J.-J. Ryu, V. Daval, P. Shrotriya: Onset of surface damage in modular orthopedic implants: influence of normal contact loading and stress-assisted dissolution, Exp. Mech. 47(3), 395–403 (2007)
32.34.
Zurück zum Zitat N.J. Hallab, J.J. Jacobs: Orthopaedic implant fretting corrosion, Corros. Rev. 21, 183–213 (2003) N.J. Hallab, J.J. Jacobs: Orthopaedic implant fretting corrosion, Corros. Rev. 21, 183–213 (2003)
32.35.
Zurück zum Zitat S.L.-Y. Woo, K.S. Lothringer, W.H. Akeson, R.D. Coutts, Y.K. Woo, B.R. Simon, M.A. Gomez: Less rigid internal fixation plates: historical perspectives and new concepts, J. Orthop. Res. 1, 431–449 (2005) S.L.-Y. Woo, K.S. Lothringer, W.H. Akeson, R.D. Coutts, Y.K. Woo, B.R. Simon, M.A. Gomez: Less rigid internal fixation plates: historical perspectives and new concepts, J. Orthop. Res. 1, 431–449 (2005)
32.36.
Zurück zum Zitat I.M. Peterson, A. Pajares, B.R. Lawn, V.P. Thompson, E.D. Rekow: Mechanical characterization of dental ceramics by Hertzian contacts, J. Dent. Res. 77, 589–602 (1998) I.M. Peterson, A. Pajares, B.R. Lawn, V.P. Thompson, E.D. Rekow: Mechanical characterization of dental ceramics by Hertzian contacts, J. Dent. Res. 77, 589–602 (1998)
32.37.
Zurück zum Zitat K. Tayton, C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings: The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors, J. Bone Joint Surg. 64-B, 105–111 (1982) K. Tayton, C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings: The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors, J. Bone Joint Surg. 64-B, 105–111 (1982)
32.38.
Zurück zum Zitat D.A. Rikli, R. Curtis, C. Shilling, J. Goldhahn: The potential of bioresorbable plates and screws in distal radius fracture fixation, Injury 33, B77–B83 (2002) D.A. Rikli, R. Curtis, C. Shilling, J. Goldhahn: The potential of bioresorbable plates and screws in distal radius fracture fixation, Injury 33, B77–B83 (2002)
32.39.
Zurück zum Zitat A. Foux, A. Yeadon, H.K. Uhthoff: Improved fracture healing with less rigid plates: a biomechanical study in dogs, Clin. Orthop. Rel. Res. 339, 232–245 (1995) A. Foux, A. Yeadon, H.K. Uhthoff: Improved fracture healing with less rigid plates: a biomechanical study in dogs, Clin. Orthop. Rel. Res. 339, 232–245 (1995)
32.40.
Zurück zum Zitat S. Saha, S. Pal: Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435–462 (2004) S. Saha, S. Pal: Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435–462 (2004)
32.41.
Zurück zum Zitat J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: an approach to isolate mechanical force, Appl. Phys. Sci. 100, 1484–1489 (2003) J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: an approach to isolate mechanical force, Appl. Phys. Sci. 100, 1484–1489 (2003)
32.42.
Zurück zum Zitat M.F. Ashby: The mechanical properties of cellular solids, Metall. Trans. 14A, 1755–1769 (1983) M.F. Ashby: The mechanical properties of cellular solids, Metall. Trans. 14A, 1755–1769 (1983)
32.43.
Zurück zum Zitat W.F. Brace: Permeability from resistivity and pore shape, J. Geophys. Res. 82, 3343–3349 (1977) W.F. Brace: Permeability from resistivity and pore shape, J. Geophys. Res. 82, 3343–3349 (1977)
32.44.
Zurück zum Zitat C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for muscoskeletal tissue engineering, J. Biomed. Mater. Res. 55, 141–150 (2001) C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for muscoskeletal tissue engineering, J. Biomed. Mater. Res. 55, 141–150 (2001)
32.45.
Zurück zum Zitat F.J. OʼBrien, B.A. Harley, I.V. Yannas, L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26, 433–441 (2005) F.J. OʼBrien, B.A. Harley, I.V. Yannas, L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26, 433–441 (2005)
32.46.
Zurück zum Zitat I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy: Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci., Vol. 86 (1989) pp. 933–937 I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy: Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci., Vol. 86 (1989) pp. 933–937
32.47.
Zurück zum Zitat D. Bynum Jr., W.B. Ledtter, C.L. Boyd, D.R. Ray: Holding characteristics of fasteners in bone, Exp. Mech. 11, 363–369 (1971) D. Bynum Jr., W.B. Ledtter, C.L. Boyd, D.R. Ray: Holding characteristics of fasteners in bone, Exp. Mech. 11, 363–369 (1971)
32.48.
Zurück zum Zitat P.M. Talaia, A. Ramos, I. Abe, M.W. Schiller, P. Lopes, R.N. Nogueira, J.L. Pinto, R. Claramunt, J.A. Simões: Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges, Exp. Mech. 47(3), 355–363 (2007) P.M. Talaia, A. Ramos, I. Abe, M.W. Schiller, P. Lopes, R.N. Nogueira, J.L. Pinto, R. Claramunt, J.A. Simões: Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges, Exp. Mech. 47(3), 355–363 (2007)
32.49.
Zurück zum Zitat S. Inceoglu, R.F. McLain, S. Cayli, C. Kilincer, L. Ferrara: A new screw pullout test incorporating the effects of stress relaxation, Exp. Techn. 4, 19–21 (2005) S. Inceoglu, R.F. McLain, S. Cayli, C. Kilincer, L. Ferrara: A new screw pullout test incorporating the effects of stress relaxation, Exp. Techn. 4, 19–21 (2005)
32.50.
Zurück zum Zitat D.D. Wright-Charlesworth, D.M. Miller, I. Miskioglu, J.A. King: Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months, J. Biomed. Mater. Res. 74A, 388–396 (2005) D.D. Wright-Charlesworth, D.M. Miller, I. Miskioglu, J.A. King: Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months, J. Biomed. Mater. Res. 74A, 388–396 (2005)
32.51.
Zurück zum Zitat D.D. Wright-Charlesworth, W.J. Peers, I. Miskioglu, L.L. Loo: Nanomechanical properties of self-reinforced composite poly(methylmethacrylate) as a function of processing temperature, J. Biomed. Mater. Res. 74A, 306–314 (2005) D.D. Wright-Charlesworth, W.J. Peers, I. Miskioglu, L.L. Loo: Nanomechanical properties of self-reinforced composite poly(methylmethacrylate) as a function of processing temperature, J. Biomed. Mater. Res. 74A, 306–314 (2005)
32.52.
Zurück zum Zitat F. Flueckiger, H. Sternthal, G.E. Klein, M. Aschauer, D. Szolar, G. Kleinhappl: Strength, elasticity, plasticity of expandable metal stents: in vitro studies with three types of stress, J. Vasc. Interv. Radiol. 5, 745–750 (1994) F. Flueckiger, H. Sternthal, G.E. Klein, M. Aschauer, D. Szolar, G. Kleinhappl: Strength, elasticity, plasticity of expandable metal stents: in vitro studies with three types of stress, J. Vasc. Interv. Radiol. 5, 745–750 (1994)
32.53.
Zurück zum Zitat J. Hanus, J. Zahora: Measurement and comparison of mechanical properties of Nitinol stents, Phys. Scr. T118, 264–267 (2005) J. Hanus, J. Zahora: Measurement and comparison of mechanical properties of Nitinol stents, Phys. Scr. T118, 264–267 (2005)
32.54.
Zurück zum Zitat K.E. Perry, C. Kugler: Non-zero mean fatigue testing of NiTi, Exp. Techn. 1, 37–38 (2002) K.E. Perry, C. Kugler: Non-zero mean fatigue testing of NiTi, Exp. Techn. 1, 37–38 (2002)
32.55.
Zurück zum Zitat S.C. Schrader, R. Bear: Evaluation of the compressive mechanical properties of endoluminal metal stents, Cathet. Cardiovasc. Diagn. 44, 179–187 (1998) S.C. Schrader, R. Bear: Evaluation of the compressive mechanical properties of endoluminal metal stents, Cathet. Cardiovasc. Diagn. 44, 179–187 (1998)
32.56.
Zurück zum Zitat J.P. Nuutinen, C. Clerc, P. Tormala: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents, J. Biomater. Sci. Polym. Ed. 14, 677–687 (2003) J.P. Nuutinen, C. Clerc, P. Tormala: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents, J. Biomater. Sci. Polym. Ed. 14, 677–687 (2003)
32.57.
Zurück zum Zitat R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent – part II: pressure-diameter relationship, J. Appl. Mech. 71, 697–705 (2004)MATH R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent – part II: pressure-diameter relationship, J. Appl. Mech. 71, 697–705 (2004)MATH
32.58.
Zurück zum Zitat R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent- part II: A beam-on-elastic foundation model, J. Appl. Mech. 71, 706–712 (2004)MATH R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent- part II: A beam-on-elastic foundation model, J. Appl. Mech. 71, 706–712 (2004)MATH
32.59.
Zurück zum Zitat D.S. Goldin, S.L. Venneri, A.K. Noor: The great out of the small, Mech. Eng. 122, 70–79 (2000) D.S. Goldin, S.L. Venneri, A.K. Noor: The great out of the small, Mech. Eng. 122, 70–79 (2000)
32.60.
Zurück zum Zitat C. Greiner, A.D. Campo, E. Arzt: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir 23, 3495–3502 (2007) C. Greiner, A.D. Campo, E. Arzt: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir 23, 3495–3502 (2007)
32.61.
Zurück zum Zitat E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004) E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004)
32.62.
Zurück zum Zitat C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher: Viruses as vehicles for growth, organization and assembly of materials, Acta Mater. 51, 5867–5880 (2003) C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher: Viruses as vehicles for growth, organization and assembly of materials, Acta Mater. 51, 5867–5880 (2003)
32.63.
Zurück zum Zitat S. Suresh, A. Mortenson: Fundamentals of Functionally Graded Materials (Institute of Materials, London 1998) S. Suresh, A. Mortenson: Fundamentals of Functionally Graded Materials (Institute of Materials, London 1998)
32.64.
Zurück zum Zitat S. Amada, Y. Ichikawa, T. Munekata, Y. Nagese, H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Compos. B 28B, 13–20 (1997) S. Amada, Y. Ichikawa, T. Munekata, Y. Nagese, H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Compos. B 28B, 13–20 (1997)
32.65.
Zurück zum Zitat P. Kreuz, W. Arnold, A.B. Kesel: Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng. 29, 1054–1058 (2001) P. Kreuz, W. Arnold, A.B. Kesel: Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng. 29, 1054–1058 (2001)
32.66.
Zurück zum Zitat M. Niino, S. Maeda: Recent development status of functionally gradient materials, ISIJ Int. 30, 699–703 (1990) M. Niino, S. Maeda: Recent development status of functionally gradient materials, ISIJ Int. 30, 699–703 (1990)
32.67.
Zurück zum Zitat P.M. Bendsoe, N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1998)MathSciNet P.M. Bendsoe, N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1998)MathSciNet
32.68.
Zurück zum Zitat T. Hirano, T. Yamada, J. Teraki, A. Kumakawa, M. Niino, K. Wakashima: Improvement in design accuracy of functionally gradient material for space plane applications, Proc. 7th Int. Symp. Space Technol. Sci. (Tokyo 1990) T. Hirano, T. Yamada, J. Teraki, A. Kumakawa, M. Niino, K. Wakashima: Improvement in design accuracy of functionally gradient material for space plane applications, Proc. 7th Int. Symp. Space Technol. Sci. (Tokyo 1990)
32.69.
Zurück zum Zitat C. Schiller, M. Siedler, F. Peters, M. Epple: Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement, Ceram. Trans. 114, 97–108 (2001) C. Schiller, M. Siedler, F. Peters, M. Epple: Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement, Ceram. Trans. 114, 97–108 (2001)
32.70.
Zurück zum Zitat A.J. Markworth, K.S. Ramesh, W.P. Parks Jr.: Review: Modelling studies applied to functionally graded materials, J. Mater. Sci. 30, 2183–2193 (1995) A.J. Markworth, K.S. Ramesh, W.P. Parks Jr.: Review: Modelling studies applied to functionally graded materials, J. Mater. Sci. 30, 2183–2193 (1995)
32.71.
Zurück zum Zitat N. Noda: Thermal stresses in functionally graded materials, J. Thermal Stresses 22, 477–512 (1999)MathSciNet N. Noda: Thermal stresses in functionally graded materials, J. Thermal Stresses 22, 477–512 (1999)MathSciNet
32.72.
Zurück zum Zitat C.E. Rousseau, H.V. Tippur: Influence of elastic gradient profiles on dynamically loaded functionally graded materials: Cracks along the gradient, Int. J. Solids Struct. 38, 7839–7856 (2001)MATH C.E. Rousseau, H.V. Tippur: Influence of elastic gradient profiles on dynamically loaded functionally graded materials: Cracks along the gradient, Int. J. Solids Struct. 38, 7839–7856 (2001)MATH
32.73.
Zurück zum Zitat A.M. Afsar, H. Sekine: Optimum material distribution for prescribed apparent fracture toughness in thick-walled FGM circular pipes, Int. J. Press. Vessels Piping 78, 471–484 (2001) A.M. Afsar, H. Sekine: Optimum material distribution for prescribed apparent fracture toughness in thick-walled FGM circular pipes, Int. J. Press. Vessels Piping 78, 471–484 (2001)
32.74.
Zurück zum Zitat T.J. Chung, A. Neubrand, J. Rodel: Effect of residual stress on the fracture toughness of Al_20_3/Al gradient materials, Euro Ceram. VII, PT1–3 206, 965–968 (2002) T.J. Chung, A. Neubrand, J. Rodel: Effect of residual stress on the fracture toughness of Al_20_3/Al gradient materials, Euro Ceram. VII, PT1–3 206, 965–968 (2002)
32.75.
Zurück zum Zitat K.S. Ravichandran: Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng. A 201, 269–276 (1995) K.S. Ravichandran: Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng. A 201, 269–276 (1995)
32.76.
Zurück zum Zitat Y.D. Lee, F. Erdogan: Residual/thermal stresses in FGM and laminated thermal barrier coatings, Int. J. Fract. 69, 145–165 (1994) Y.D. Lee, F. Erdogan: Residual/thermal stresses in FGM and laminated thermal barrier coatings, Int. J. Fract. 69, 145–165 (1994)
32.77.
Zurück zum Zitat S. Suresh, A.E. Giannakopoulos, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with sharp interface, J. Mech. Phys. Solids 42, 979–1018 (1994)MATH S. Suresh, A.E. Giannakopoulos, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with sharp interface, J. Mech. Phys. Solids 42, 979–1018 (1994)MATH
32.78.
Zurück zum Zitat A.E. Giannakopoulos, S. Suresh, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, J. Mech. Phys. Solids 43, 1335–1354 (1995)MathSciNet A.E. Giannakopoulos, S. Suresh, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, J. Mech. Phys. Solids 43, 1335–1354 (1995)MathSciNet
32.79.
Zurück zum Zitat M. Finot, S. Suresh: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids 44, 683–721 (1996) M. Finot, S. Suresh: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids 44, 683–721 (1996)
32.80.
Zurück zum Zitat Q.R. Hou, J. Gao: Thermal stress relaxation by a composition-graded intermediate layer, Mod. Phys. Lett. 14, 685–692 (2000) Q.R. Hou, J. Gao: Thermal stress relaxation by a composition-graded intermediate layer, Mod. Phys. Lett. 14, 685–692 (2000)
32.81.
Zurück zum Zitat B.H. Rabin, R.L. Williamson, H.A. Bruck, X.L. Wang, T.R. Watkins, D.R. Clarke: Residual strains in an Al_2O_3-Ni joint bonded with a composite interlayer: experimental measurements and FEM analysis, J. Am. Ceram. Soc. 81, 1541–1549 (1998) B.H. Rabin, R.L. Williamson, H.A. Bruck, X.L. Wang, T.R. Watkins, D.R. Clarke: Residual strains in an Al_2O_3-Ni joint bonded with a composite interlayer: experimental measurements and FEM analysis, J. Am. Ceram. Soc. 81, 1541–1549 (1998)
32.82.
Zurück zum Zitat B.H. Rabin, R.J. Heaps: Powder processing of Ni-Al_2O_3 FGM, Ceram. Trans. 34, 173–180 (1993) B.H. Rabin, R.J. Heaps: Powder processing of Ni-Al_2O_3 FGM, Ceram. Trans. 34, 173–180 (1993)
32.83.
Zurück zum Zitat R.L. Williamson, B.H. Rabin, J.T. Drake: Finite element analysis of thermal residual stresses at graded ceramic–metal interfaces part I: model description and geometrical effects, J. Appl. Phys. 74, 1310–1320 (1993) R.L. Williamson, B.H. Rabin, J.T. Drake: Finite element analysis of thermal residual stresses at graded ceramic–metal interfaces part I: model description and geometrical effects, J. Appl. Phys. 74, 1310–1320 (1993)
32.84.
Zurück zum Zitat J.W. Eischen: Fracture of nonhomogeneous materials, Int. J. Fract. 34, 3–22 (1987) J.W. Eischen: Fracture of nonhomogeneous materials, Int. J. Fract. 34, 3–22 (1987)
32.85.
Zurück zum Zitat G. Anlas, M.H. Santare, J. Lambros: Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract. 104, 131–143 (2000) G. Anlas, M.H. Santare, J. Lambros: Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract. 104, 131–143 (2000)
32.86.
Zurück zum Zitat M. Dao, P. Gu, A. Maewal, R.J. Asaro: A micromechanical study of residual stresses in functionally graded materials, Acta Mater. 45, 3265–3276 (1997) M. Dao, P. Gu, A. Maewal, R.J. Asaro: A micromechanical study of residual stresses in functionally graded materials, Acta Mater. 45, 3265–3276 (1997)
32.87.
Zurück zum Zitat M.H. Santare, J. Lambros: Use of graded finite elements to model the behavior of nonhomogeneous materials, J. Appl. Mech.-Trans. ASME 67, 819–822 (2000)MATH M.H. Santare, J. Lambros: Use of graded finite elements to model the behavior of nonhomogeneous materials, J. Appl. Mech.-Trans. ASME 67, 819–822 (2000)MATH
32.88.
Zurück zum Zitat E.S.C. Chin: Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A 259, 155–161 (1999) E.S.C. Chin: Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A 259, 155–161 (1999)
32.89.
Zurück zum Zitat H.A. Bruck: A one-dimensional model for designing functionally graded materials to attenuate stress waves, Int. J. Solids Struct. 37, 6383–6395 (2000)MATH H.A. Bruck: A one-dimensional model for designing functionally graded materials to attenuate stress waves, Int. J. Solids Struct. 37, 6383–6395 (2000)MATH
32.90.
Zurück zum Zitat X. Han, G.R. Liu, K.Y. Lam: Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52, 851–865 (2001)MATH X. Han, G.R. Liu, K.Y. Lam: Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52, 851–865 (2001)MATH
32.91.
Zurück zum Zitat G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Compos. Sci. Technol. 61, 1401–1411 (2001) G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Compos. Sci. Technol. 61, 1401–1411 (2001)
32.92.
Zurück zum Zitat J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Sadaune: Acoustic wave propagation in continuous functionally graded plates: an extension of the legendre polynomial approach, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 48, 1332–1340 (2001) J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Sadaune: Acoustic wave propagation in continuous functionally graded plates: an extension of the legendre polynomial approach, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 48, 1332–1340 (2001)
32.93.
Zurück zum Zitat Y. Li, K.T. Ramesh, E.S.C. Chin: Dynamic characterization of layered and graded structures under impulsive loading, Int. J. Solids Struct. 38, 6045–6061 (2001)MATH Y. Li, K.T. Ramesh, E.S.C. Chin: Dynamic characterization of layered and graded structures under impulsive loading, Int. J. Solids Struct. 38, 6045–6061 (2001)MATH
32.94.
Zurück zum Zitat P.R. Marur, H.V. Tippur: Evaluation of mechanical properties of functionally graded materials, J. Test. Eval. 26, 539–545 (1998) P.R. Marur, H.V. Tippur: Evaluation of mechanical properties of functionally graded materials, J. Test. Eval. 26, 539–545 (1998)
32.95.
Zurück zum Zitat V. Parameswaram, A. Shukla: Crack tip stress fields for dynamic fracture in functionally gradient materials, Mech. Mater. 31, 579–596 (1999) V. Parameswaram, A. Shukla: Crack tip stress fields for dynamic fracture in functionally gradient materials, Mech. Mater. 31, 579–596 (1999)
32.96.
Zurück zum Zitat S.S.V. Kandula, J. Abanto-bueno, P.H. Geubelle, J. Lambros: Cohesive modeling of dynamic fracture in functionally graded materials, Int. J. Fract. 132, 275–296 (2005)MATH S.S.V. Kandula, J. Abanto-bueno, P.H. Geubelle, J. Lambros: Cohesive modeling of dynamic fracture in functionally graded materials, Int. J. Fract. 132, 275–296 (2005)MATH
32.97.
Zurück zum Zitat J. Abanto-Bueno, J. Lambros: Experimental determination of cohesive failure properties of a photodegradable copolymer, Exp. Mech. 45, 144–152 (2005) J. Abanto-Bueno, J. Lambros: Experimental determination of cohesive failure properties of a photodegradable copolymer, Exp. Mech. 45, 144–152 (2005)
32.98.
Zurück zum Zitat A. Shukla, N. Jain, R. Chona: Dynamic fracture studies in functionally graded materials, Strain 43, 76–95 (2007) A. Shukla, N. Jain, R. Chona: Dynamic fracture studies in functionally graded materials, Strain 43, 76–95 (2007)
32.99.
Zurück zum Zitat V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci. 33, 3303–3311 (1998) V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci. 33, 3303–3311 (1998)
32.100.
Zurück zum Zitat C.-E. Rousseau, H.V. Tippur: Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis, Mech. Mater. 33, 403–421 (2001) C.-E. Rousseau, H.V. Tippur: Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis, Mech. Mater. 33, 403–421 (2001)
32.101.
Zurück zum Zitat J. Huang, A.J. Rapoff: Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded materials, Proc. Inst. Mech. Eng. Part L – J. Mater. – Des. Appl., Vol. 217 (2003) pp. 23–27 J. Huang, A.J. Rapoff: Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded materials, Proc. Inst. Mech. Eng. Part L – J. Mater. – Des. Appl., Vol. 217 (2003) pp. 23–27
32.102.
Zurück zum Zitat B. Garita, A. Rapoff: Biomimetic designs from bone, Exp. Techn. 1, 36–39 (2003) B. Garita, A. Rapoff: Biomimetic designs from bone, Exp. Techn. 1, 36–39 (2003)
32.103.
Zurück zum Zitat N. Gotzen, A.R. Cross, P.G. Ifju, A.J. Rapoff: Understanding stress concentration about a nutrient foramen, J. Biomech. 36, 1511–1521 (2003) N. Gotzen, A.R. Cross, P.G. Ifju, A.J. Rapoff: Understanding stress concentration about a nutrient foramen, J. Biomech. 36, 1511–1521 (2003)
32.104.
Zurück zum Zitat R.M. Gouker, S.K. Gupta, H.A. Bruck, T. Holzchuh: Manufacturing of multi-material compliant mechanisms using multi-material molding, Int. J. Adv. Manuf. Technol. 28, 1–27 (2006) R.M. Gouker, S.K. Gupta, H.A. Bruck, T. Holzchuh: Manufacturing of multi-material compliant mechanisms using multi-material molding, Int. J. Adv. Manuf. Technol. 28, 1–27 (2006)
32.105.
Zurück zum Zitat L.R. Xu, H. Kuai, S. Sengupta: Dissimilar material joints with and without free-edge stress singularities part I: a biologically inspired design, Exp. Mech. 44, 608–615 (2004) L.R. Xu, H. Kuai, S. Sengupta: Dissimilar material joints with and without free-edge stress singularities part I: a biologically inspired design, Exp. Mech. 44, 608–615 (2004)
32.106.
Zurück zum Zitat R.S. Trask, H.R. Williams, I.P. Bond: Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir. Biomimetics 2, P1–P9 (2007) R.S. Trask, H.R. Williams, I.P. Bond: Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir. Biomimetics 2, P1–P9 (2007)
32.107.
Zurück zum Zitat J.Y. Lee, G.A. Buxton, A.C. Balazs: Using nanoparticles to create self-healing composites, J. Chem. Phys. 121, 5531–5540 (2004) J.Y. Lee, G.A. Buxton, A.C. Balazs: Using nanoparticles to create self-healing composites, J. Chem. Phys. 121, 5531–5540 (2004)
32.108.
Zurück zum Zitat S.M. Bleay, C.B. Loader, V.J. Hayes, L. Humberstone, P.T. Curtis: A smart repair system for polymer matrix composites, Compos. A 32, 1767–1776 (2001) S.M. Bleay, C.B. Loader, V.J. Hayes, L. Humberstone, P.T. Curtis: A smart repair system for polymer matrix composites, Compos. A 32, 1767–1776 (2001)
32.109.
Zurück zum Zitat X.X. Chen, M.A. Dam, K. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl: A thermally re-mendable cross-linked polymeric material, Science 295, 1698–1702 (2002) X.X. Chen, M.A. Dam, K. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl: A thermally re-mendable cross-linked polymeric material, Science 295, 1698–1702 (2002)
32.110.
Zurück zum Zitat C.M. Chung, Y.S. Roh, S.Y. Cho, J.G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition, Chem. Mater. 16, 3982–3984 (2004) C.M. Chung, Y.S. Roh, S.Y. Cho, J.G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition, Chem. Mater. 16, 3982–3984 (2004)
32.111.
Zurück zum Zitat E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42, 372–379 (2002) E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42, 372–379 (2002)
32.112.
Zurück zum Zitat V. Birman: Stability of functionally graded shape memory alloy sandwich panels, Smart Mater. Struct. 6, 278–286 (1997) V. Birman: Stability of functionally graded shape memory alloy sandwich panels, Smart Mater. Struct. 6, 278–286 (1997)
32.113.
Zurück zum Zitat K. Ho, G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target, Thin Solid Films 370, 18–29 (2000) K. Ho, G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target, Thin Solid Films 370, 18–29 (2000)
32.114.
Zurück zum Zitat H.A. Bruck, C.L. Moore, T. Valentine: Characterization and modeling of bending actuation in polyurethanes with graded distributions of one-way shape memory alloy wires, Exp. Mech. 44, 62–70 (2004) H.A. Bruck, C.L. Moore, T. Valentine: Characterization and modeling of bending actuation in polyurethanes with graded distributions of one-way shape memory alloy wires, Exp. Mech. 44, 62–70 (2004)
32.115.
Zurück zum Zitat H.A. Bruck, C.L. Moore, T. Valentine: Repeatable bending actuation in polyurethanes using opposing embedded one-way shape memory alloy wires exhibiting large strain recovery, Smart Mater. Struct. 11, 509–518 (2002) H.A. Bruck, C.L. Moore, T. Valentine: Repeatable bending actuation in polyurethanes using opposing embedded one-way shape memory alloy wires exhibiting large strain recovery, Smart Mater. Struct. 11, 509–518 (2002)
32.116.
Zurück zum Zitat C.L. Moore, H.A. Bruck: A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethanes, Smart Mater. Struct. 11, 130–139 (2002) C.L. Moore, H.A. Bruck: A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethanes, Smart Mater. Struct. 11, 130–139 (2002)
32.117.
Zurück zum Zitat E. Fukada, I. Yasuda: On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12, 1158–1162 (1957) E. Fukada, I. Yasuda: On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12, 1158–1162 (1957)
32.118.
Zurück zum Zitat G. Song, V. Sethi, H.N. Li: Vibration control of civil structures using piezoceramic smart materials: a review, Eng. Struct. 28, 1513–1524 (2006) G. Song, V. Sethi, H.N. Li: Vibration control of civil structures using piezoceramic smart materials: a review, Eng. Struct. 28, 1513–1524 (2006)
32.119.
Zurück zum Zitat J. Sirohi, I. Chopra: Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000) J. Sirohi, I. Chopra: Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)
32.120.
Zurück zum Zitat K.D. Rolt: History of the flextensional electroacoustic transducer, J. Acoust. Soc. Am. 87, 1340–1349 (1990) K.D. Rolt: History of the flextensional electroacoustic transducer, J. Acoust. Soc. Am. 87, 1340–1349 (1990)
32.121.
Zurück zum Zitat B.J. Pokines, E. Garcia: A smart material microamplification mechanisms fabricated using LIGA, Smart Mater. Struct. 7, 105–112 (1998) B.J. Pokines, E. Garcia: A smart material microamplification mechanisms fabricated using LIGA, Smart Mater. Struct. 7, 105–112 (1998)
32.122.
Zurück zum Zitat A. Garg, D.C. Agrawal: Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng. B 86, 134–143 (2001) A. Garg, D.C. Agrawal: Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng. B 86, 134–143 (2001)
32.123.
Zurück zum Zitat R. Rajapakse, X. Zeng: Toughening of conducting cracks due to domain switching, Acta Mater. 49, 877–885 (2001) R. Rajapakse, X. Zeng: Toughening of conducting cracks due to domain switching, Acta Mater. 49, 877–885 (2001)
32.124.
Zurück zum Zitat K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Ceram. Soc. 23, 1577–1583 (2003) K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Ceram. Soc. 23, 1577–1583 (2003)
32.125.
Zurück zum Zitat J. Tyson, T. Schmidt, K. Galanulis: Biomechanics deformation and strain measurements with 3D image correlation phtogrammetry, Exp. Techn. 5, 39–42 (2002) J. Tyson, T. Schmidt, K. Galanulis: Biomechanics deformation and strain measurements with 3D image correlation phtogrammetry, Exp. Techn. 5, 39–42 (2002)
32.126.
Zurück zum Zitat Y. Bar-Cohen: Electroactive polymers as artificial muscles: reality and challenges, Proc. 42nd AIAA Struct. Struct. Dyn. Mater. Conf. (Seattle 2001) Y. Bar-Cohen: Electroactive polymers as artificial muscles: reality and challenges, Proc. 42nd AIAA Struct. Struct. Dyn. Mater. Conf. (Seattle 2001)
32.127.
Zurück zum Zitat G. Mayer, M. Sarikaya: Rigid biological composite materials: structural examples for biomimetic design, Exp. Mech. 42, 394–403 (2002) G. Mayer, M. Sarikaya: Rigid biological composite materials: structural examples for biomimetic design, Exp. Mech. 42, 394–403 (2002)
32.128.
Zurück zum Zitat G. Mayer: Rigid biological systems as models for synthetic composites, Science 310, 1144–1147 (2005) G. Mayer: Rigid biological systems as models for synthetic composites, Science 310, 1144–1147 (2005)
32.129.
Zurück zum Zitat F. Barthelat, H. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Exp. Mech. 47(3), 311–324 (2007) F. Barthelat, H. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Exp. Mech. 47(3), 311–324 (2007)
32.130.
Zurück zum Zitat L.S. Gyger Jr., P. Kulkarni, H.A. Bruck, S.K. Gupta, O.C. Wilson Jr.: Replamineform inspired bones structures (RIBS) using multi-piece molds and advanced ceramic gelcasting technology, Mater. Sci. Eng. C 27, 646–653 (2007) L.S. Gyger Jr., P. Kulkarni, H.A. Bruck, S.K. Gupta, O.C. Wilson Jr.: Replamineform inspired bones structures (RIBS) using multi-piece molds and advanced ceramic gelcasting technology, Mater. Sci. Eng. C 27, 646–653 (2007)
32.131.
Zurück zum Zitat A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre, Proc. R. Soc. London: Ser. B. Biol. Sci, Vol. 234 (1988) pp. 415–440 A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre, Proc. R. Soc. London: Ser. B. Biol. Sci, Vol. 234 (1988) pp. 415–440
32.132.
Zurück zum Zitat S.L. Tracy, H.M. Jennings: The growth of self-aligned calcium carbonate precipitates on inorganic substrates, J. Mater. Sci. 33, 4075–4077 (1998) S.L. Tracy, H.M. Jennings: The growth of self-aligned calcium carbonate precipitates on inorganic substrates, J. Mater. Sci. 33, 4075–4077 (1998)
32.133.
Zurück zum Zitat E.W. White: Biomaterials innovation: itʼs a long road to the operating room, Mater. Res. Innov. 1, 57–63 (1997) E.W. White: Biomaterials innovation: itʼs a long road to the operating room, Mater. Res. Innov. 1, 57–63 (1997)
32.134.
Zurück zum Zitat C. Müller-Mai, C. Voigt, S.R. de Almeida Reis, H. Herbst, U.M. Gross: Substitution of natural coral by cortical bone and bone marrow in the rat femur. 2. SEM, TEM, and in situ hybridization, J. Mater. Sci. Mater. Med. 7, 479–488 (1996) C. Müller-Mai, C. Voigt, S.R. de Almeida Reis, H. Herbst, U.M. Gross: Substitution of natural coral by cortical bone and bone marrow in the rat femur. 2. SEM, TEM, and in situ hybridization, J. Mater. Sci. Mater. Med. 7, 479–488 (1996)
32.135.
Zurück zum Zitat E.W. White, J.N. Weber, D.M. Roy, E.L. Owen, R.T. Chiroff, R.A. White: Replamineform porous biomaterials for hard tissue implant applications, J. Biomed. Mater. Res. 9, 23–27 (1975) E.W. White, J.N. Weber, D.M. Roy, E.L. Owen, R.T. Chiroff, R.A. White: Replamineform porous biomaterials for hard tissue implant applications, J. Biomed. Mater. Res. 9, 23–27 (1975)
32.136.
Zurück zum Zitat R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy: Restoration of articular surfaces overlying replamineform porous biomaterials, J. Biomed. Mater. Res. 9, 29 (1975) R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy: Restoration of articular surfaces overlying replamineform porous biomaterials, J. Biomed. Mater. Res. 9, 29 (1975)
32.137.
Zurück zum Zitat S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Freezing as a path to build complex composites, Science 311, 515–518 (2006) S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Freezing as a path to build complex composites, Science 311, 515–518 (2006)
Metadaten
Titel
Implantable Biomedical Devices and Biologically Inspired Materials
verfasst von
Hugh Bruck, Dr.
Copyright-Jahr
2008
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-30877-7_32

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.