Skip to main content

2015 | OriginalPaper | Buchkapitel

Implantable Brain Interface: High-Density Microelectrode Array for Neural Recording

verfasst von : Sang Beom Jun

Erschienen in: Smart Sensors for Health and Environment Monitoring

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the past decades, the use of intracortical microelectrode arrays for brain–computer interface has increased due to the high spatial and temporal resolutions compared with the noninvasive methods such as electroencephalogram (EEG), functional magnetic resonance imaging (fMRI), and near-infrared spectroscopy (NIRS). Recently, it was also reported that the intracortical microelectrode was implanted to the human brain for the purpose of controlling a robot arm. Although the invasive method with the microelectrode may have the safety and the ethical issues, it is undoubtable that the microelectrode array can provide the most precise and effective means to directly record and modulate the neural activity. To date, a variety of multichannel microelectrodes penetrating mammalian nerve tissues have been proposed with respect to shapes, materials, fabrication methods, and so forth. Among the various types, the silicon-based microelectrodes array has gained the biggest technical advances as well as the clinical applications. Despite the large amount of advance in research, however, the clinical use of the intracortical microelectrode arrays has not been realized mostly due to the failure of functionality for long-term applications. It is believed that the major failure mode of the microelectrode arrays is the brain tissue reaction against the implanted electrodes. Since the glial encapsulation acts as an electrical insulation layer around the electrodes, the neuronal signals cannot be recorded via the electrodes. In order to overcome this problem, various strategies have been attempted including the electrode design optimization, the flexible microelectrodes and the drug delivery to suppress the tissue responses. In this chapter, the technical advances for the high-density microelectrode arrays are reviewed and the various strategies are discussed to enable the clinical use of the intracortical microelectrode arrays for brain–computer interface as well as the treatment of brain disorders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burkholder DB, Sulc V, Hoffman EM, Cascino GD, Britton JW, So EL, Marsh WR, Meyer FB, Van Gompel JJ, Giannini C, Wass CT, Watson RE Jr, Worrell GA (2014) Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging-negative temporal lobe epilepsy surgery. JAMA Neurol 71:702 Burkholder DB, Sulc V, Hoffman EM, Cascino GD, Britton JW, So EL, Marsh WR, Meyer FB, Van Gompel JJ, Giannini C, Wass CT, Watson RE Jr, Worrell GA (2014) Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging-negative temporal lobe epilepsy surgery. JAMA Neurol 71:702
2.
Zurück zum Zitat Nielsen HB (2014) Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol 5:93CrossRef Nielsen HB (2014) Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol 5:93CrossRef
3.
Zurück zum Zitat Tewarie P, Hillebrand A, Van Dellen E, Schoonheim MM, Barkhof F, Polman CH, Beaulieu C, Gong G, Van Dijk BW, Stam CJ (2014) Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study. Neuroimage 97:296 Tewarie P, Hillebrand A, Van Dellen E, Schoonheim MM, Barkhof F, Polman CH, Beaulieu C, Gong G, Van Dijk BW, Stam CJ (2014) Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study. Neuroimage 97:296
4.
Zurück zum Zitat Vakalopoulos C (2014) The EEG as an index of neuromodulator balance in memory and mental illness. Front Neurosci 8:63CrossRef Vakalopoulos C (2014) The EEG as an index of neuromodulator balance in memory and mental illness. Front Neurosci 8:63CrossRef
5.
Zurück zum Zitat Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455CrossRef Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455CrossRef
6.
Zurück zum Zitat Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 8:025027CrossRef Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 8:025027CrossRef
7.
Zurück zum Zitat Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451CrossRef Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451CrossRef
8.
Zurück zum Zitat Strumwasser F (1958) Long-term recording’ from single neurons in brain of unrestrained mammals. Science 127:469–470CrossRef Strumwasser F (1958) Long-term recording’ from single neurons in brain of unrestrained mammals. Science 127:469–470CrossRef
9.
Zurück zum Zitat Carette B (1978) A new method of manufacturing multi-barrelled micropipettes with projecting recording barrel. Electroencephalogr Clin Neurophysiol 44:248–250CrossRef Carette B (1978) A new method of manufacturing multi-barrelled micropipettes with projecting recording barrel. Electroencephalogr Clin Neurophysiol 44:248–250CrossRef
10.
Zurück zum Zitat Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. Methods Neural Ensemble Recordings 2:361 Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. Methods Neural Ensemble Recordings 2:361
11.
Zurück zum Zitat Stice P, Muthuswamy J (2009) Assessment of gliosis around moveable implants in the brain. J Neural Eng 6:046004CrossRef Stice P, Muthuswamy J (2009) Assessment of gliosis around moveable implants in the brain. J Neural Eng 6:046004CrossRef
12.
Zurück zum Zitat Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17:238–247CrossRef Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17:238–247CrossRef
13.
Zurück zum Zitat Starr A, Wise KD, Csongradi J (1973) An evaluation of photoengraved microelectrodes for extracellular single-unit recording. IEEE Trans Biomed Eng 20:291–293CrossRef Starr A, Wise KD, Csongradi J (1973) An evaluation of photoengraved microelectrodes for extracellular single-unit recording. IEEE Trans Biomed Eng 20:291–293CrossRef
14.
Zurück zum Zitat Pochay P, Wise KD, Allard LF, Rutledge LT (1979) A multichannel depth probe fabricated using electron-beam lithography. IEEE Trans Biomed Eng 26:199–206CrossRef Pochay P, Wise KD, Allard LF, Rutledge LT (1979) A multichannel depth probe fabricated using electron-beam lithography. IEEE Trans Biomed Eng 26:199–206CrossRef
15.
Zurück zum Zitat Yoon TH, Hwang EJ, Shin DY, Park SI, Oh SJ, Jung SC, Shin HC, Kim SJ (2000) A micromachined silicon depth probe for multichannel neural recording. IEEE Trans Biomed Eng 47:1082–1087CrossRef Yoon TH, Hwang EJ, Shin DY, Park SI, Oh SJ, Jung SC, Shin HC, Kim SJ (2000) A micromachined silicon depth probe for multichannel neural recording. IEEE Trans Biomed Eng 47:1082–1087CrossRef
16.
Zurück zum Zitat Cheung K, Lee G, Djupsund K, Dan Y, Lee LP (2000) A new neural probe using SOI wafers with topological interlocking mechanisms. In: 1st Annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology, Lyon Cheung K, Lee G, Djupsund K, Dan Y, Lee LP (2000) A new neural probe using SOI wafers with topological interlocking mechanisms. In: 1st Annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology, Lyon
17.
Zurück zum Zitat Bement SL, Wise KD, Anderson DJ, Najafi K, Drake KL (1986) Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng 33:230–241CrossRef Bement SL, Wise KD, Anderson DJ, Najafi K, Drake KL (1986) Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng 33:230–241CrossRef
18.
Zurück zum Zitat Ji J, Najafi K, Wise KD (1991) A low-noise demultiplexing system for active multichannel microelectrode arrays. IEEE Trans Biomed Eng 38:75–81CrossRef Ji J, Najafi K, Wise KD (1991) A low-noise demultiplexing system for active multichannel microelectrode arrays. IEEE Trans Biomed Eng 38:75–81CrossRef
19.
Zurück zum Zitat Wise KD (2005) Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag 24:22–29CrossRef Wise KD (2005) Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag 24:22–29CrossRef
20.
Zurück zum Zitat Hoogerwerf AC, Wise KD (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41:1136–1146CrossRef Hoogerwerf AC, Wise KD (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41:1136–1146CrossRef
21.
Zurück zum Zitat Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38:758–768CrossRef Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38:758–768CrossRef
22.
Zurück zum Zitat Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275CrossRef Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275CrossRef
23.
Zurück zum Zitat Rousche PJ, Normann RA (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the utah intracortical electrode array. IEEE Trans Rehabil Eng 7:56–68CrossRef Rousche PJ, Normann RA (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the utah intracortical electrode array. IEEE Trans Rehabil Eng 7:56–68CrossRef
24.
Zurück zum Zitat Warren DJ, Koulakov A, Normann RA (2004) Spatiotemporal encoding of a bar’s direction of motion by neural ensembles in cat primary visual cortex. Ann Biomed Eng 32:1265–1275CrossRef Warren DJ, Koulakov A, Normann RA (2004) Spatiotemporal encoding of a bar’s direction of motion by neural ensembles in cat primary visual cortex. Ann Biomed Eng 32:1265–1275CrossRef
25.
Zurück zum Zitat Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587CrossRef Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587CrossRef
26.
Zurück zum Zitat Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375CrossRef Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375CrossRef
27.
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171CrossRef
28.
Zurück zum Zitat Wark HA, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann RA, Tathireddy P (2013) A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng 10:045003CrossRef Wark HA, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann RA, Tathireddy P (2013) A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng 10:045003CrossRef
29.
Zurück zum Zitat Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18CrossRef Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18CrossRef
30.
Zurück zum Zitat Prasad A, Sanchez JC (2012) Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng 9:026028CrossRef Prasad A, Sanchez JC (2012) Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng 9:026028CrossRef
31.
Zurück zum Zitat Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA 100:11041–11046CrossRef Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA 100:11041–11046CrossRef
32.
Zurück zum Zitat Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391CrossRef Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391CrossRef
33.
Zurück zum Zitat Prasad A, Xue QS, Sankar V, Nishida T, Shaw G, Streit WJ, Sanchez JC (2012) Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 9:056015CrossRef Prasad A, Xue QS, Sankar V, Nishida T, Shaw G, Streit WJ, Sanchez JC (2012) Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J Neural Eng 9:056015CrossRef
34.
Zurück zum Zitat Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W (2003) Brain responses to micro-machined silicon devices. Brain Res 983:23–35CrossRef Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W (2003) Brain responses to micro-machined silicon devices. Brain Res 983:23–35CrossRef
35.
Zurück zum Zitat Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4:410–423CrossRef Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4:410–423CrossRef
36.
Zurück zum Zitat Subbaroyan J, Martin DC, Kipke DR (2005) A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng 2:103–113CrossRef Subbaroyan J, Martin DC, Kipke DR (2005) A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng 2:103–113CrossRef
37.
Zurück zum Zitat Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F (2009) Encapsulation of an integrated neural interface device with Parylene C. IEEE Trans Biomed Eng 56:23–29CrossRef Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F (2009) Encapsulation of an integrated neural interface device with Parylene C. IEEE Trans Biomed Eng 56:23–29CrossRef
38.
Zurück zum Zitat Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY (2012) Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J Neural Eng 9:036001CrossRef Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY (2012) Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J Neural Eng 9:036001CrossRef
39.
Zurück zum Zitat Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ (2012) A flexible depth probe using liquid crystal polymer. IEEE Trans Biomed Eng 59:2085–2094CrossRef Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ (2012) A flexible depth probe using liquid crystal polymer. IEEE Trans Biomed Eng 59:2085–2094CrossRef
40.
Zurück zum Zitat Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48:361–371 Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng 48:361–371
41.
Zurück zum Zitat Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22:1783–1790CrossRef Cheung KC, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22:1783–1790CrossRef
42.
Zurück zum Zitat Metz S, Jiguet S, Bertsch A, Renaud P (2004) Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4:114–120CrossRef Metz S, Jiguet S, Bertsch A, Renaud P (2004) Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4:114–120CrossRef
43.
Zurück zum Zitat Schmidt EM, McIntosh JS, Bak MJ (1988) Long-term implants of Parylene-C coated microelectrodes. Med Biol Eng Comput 26:96–101CrossRef Schmidt EM, McIntosh JS, Bak MJ (1988) Long-term implants of Parylene-C coated microelectrodes. Med Biol Eng Comput 26:96–101CrossRef
44.
Zurück zum Zitat Schmidt EM, Bak MJ, Christensen P (1995) Laser exposure of Parylene-C insulated microelectrodes. J Neurosci Methods 62:89–92CrossRef Schmidt EM, Bak MJ, Christensen P (1995) Laser exposure of Parylene-C insulated microelectrodes. J Neurosci Methods 62:89–92CrossRef
45.
Zurück zum Zitat Kato Y, Saito I, Hoshino T, Suzuki T, Mabuchi K (2006) Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer. Conf Proc IEEE Eng Med Biol Soc 1:660–663CrossRef Kato Y, Saito I, Hoshino T, Suzuki T, Mabuchi K (2006) Preliminary study of multichannel flexible neural probes coated with hybrid biodegradable polymer. Conf Proc IEEE Eng Med Biol Soc 1:660–663CrossRef
46.
Zurück zum Zitat Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E (2013) 3D Parylene sheath neural probe for chronic recordings. J Neural Eng 10:045002CrossRef Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E (2013) 3D Parylene sheath neural probe for chronic recordings. J Neural Eng 10:045002CrossRef
47.
Zurück zum Zitat Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5:519–523CrossRef Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5:519–523CrossRef
48.
Zurück zum Zitat Kozai TD, Kipke DR (2009) Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods 184:199–205CrossRef Kozai TD, Kipke DR (2009) Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J Neurosci Methods 184:199–205CrossRef
49.
Zurück zum Zitat Chhatbar PY, von Kraus LM, Semework M, Francis JT (2010) A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays. J Neurosci Methods 188:187–194CrossRef Chhatbar PY, von Kraus LM, Semework M, Francis JT (2010) A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays. J Neurosci Methods 188:187–194CrossRef
50.
Zurück zum Zitat Musallam S, Bak MJ, Troyk PR, Andersen RA (2007) A floating metal microelectrode array for chronic implantation. J Neurosci Methods 160:122–127CrossRef Musallam S, Bak MJ, Troyk PR, Andersen RA (2007) A floating metal microelectrode array for chronic implantation. J Neurosci Methods 160:122–127CrossRef
51.
Zurück zum Zitat Sankar V, Sanchez JC, McCumiskey E, Brown N, Taylor CR, Ehlert GJ, Sodano HA, Nishida T (2013) A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants. Front Neurol 4:124CrossRef Sankar V, Sanchez JC, McCumiskey E, Brown N, Taylor CR, Ehlert GJ, Sodano HA, Nishida T (2013) A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants. Front Neurol 4:124CrossRef
52.
Zurück zum Zitat Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4:417–422CrossRef Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4:417–422CrossRef
53.
Zurück zum Zitat Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248CrossRef Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248CrossRef
54.
Zurück zum Zitat Dietrich PY, Walker PR, Saas P (2003) Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation? Neurology 60:548–554CrossRef Dietrich PY, Walker PR, Saas P (2003) Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation? Neurology 60:548–554CrossRef
55.
Zurück zum Zitat Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 46:251–264CrossRef Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 46:251–264CrossRef
56.
Zurück zum Zitat Malhotra SK, Shnitka TK, Elbrink J (1990) Reactive astrocytes—a review. Cytobios 61:133–160 Malhotra SK, Shnitka TK, Elbrink J (1990) Reactive astrocytes—a review. Cytobios 61:133–160
57.
Zurück zum Zitat Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434CrossRef Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434CrossRef
58.
Zurück zum Zitat Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 17:61–74CrossRefMATH Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 17:61–74CrossRefMATH
59.
Zurück zum Zitat Bovolenta P, Wandosell F, Nieto-Sampedro M (1992) CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res 94:367–379CrossRef Bovolenta P, Wandosell F, Nieto-Sampedro M (1992) CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res 94:367–379CrossRef
60.
Zurück zum Zitat Nojyo Y, Ibata Y, Sano Y (1976) Demonstration of the tuberoinfundibular tract of the cat: fluorescence histochemistry and electron microscopy. Cell Tissue Res 168:289–301CrossRef Nojyo Y, Ibata Y, Sano Y (1976) Demonstration of the tuberoinfundibular tract of the cat: fluorescence histochemistry and electron microscopy. Cell Tissue Res 168:289–301CrossRef
61.
Zurück zum Zitat Stensaas SS, Stensaas LJ (1976) The reaction of the cerebral cortex to chronically implanted plastic needles. Acta Neuropathol 35:187–203 Stensaas SS, Stensaas LJ (1976) The reaction of the cerebral cortex to chronically implanted plastic needles. Acta Neuropathol 35:187–203
62.
Zurück zum Zitat Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565C:7–13CrossRef Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565C:7–13CrossRef
63.
Zurück zum Zitat Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11:344–348CrossRef Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11:344–348CrossRef
64.
Zurück zum Zitat Wang T, Zhang W, Pei Z, Block M, Wilson B, Reece JM, Miller DS, Hong JS (2006) Reactive microgliosis participates in MPP+ -induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor. FASEB J 20:906–915CrossRef Wang T, Zhang W, Pei Z, Block M, Wilson B, Reece JM, Miller DS, Hong JS (2006) Reactive microgliosis participates in MPP+ -induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor. FASEB J 20:906–915CrossRef
65.
Zurück zum Zitat Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11:1065–1073CrossRef Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11:1065–1073CrossRef
66.
Zurück zum Zitat Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885CrossRef Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885CrossRef
67.
Zurück zum Zitat Ignatius MJ, Sawhney N, Gupta A, Thibadeau BM, Monteiro OR, Brown IG (1998) Bioactive surface coatings for nanoscale instruments: effects on CNS neurons. J Biomed Mater Res 40:264–274CrossRef Ignatius MJ, Sawhney N, Gupta A, Thibadeau BM, Monteiro OR, Brown IG (1998) Bioactive surface coatings for nanoscale instruments: effects on CNS neurons. J Biomed Mater Res 40:264–274CrossRef
68.
Zurück zum Zitat Spataro L, Dilgen J, Retterer S, Spence AJ, Isaacson M, Turner JN, Shain W (2005) Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol 194:289–300CrossRef Spataro L, Dilgen J, Retterer S, Spence AJ, Isaacson M, Turner JN, Shain W (2005) Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol 194:289–300CrossRef
69.
Zurück zum Zitat Zhong Y, Bellamkonda RV (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148:15–27CrossRef Zhong Y, Bellamkonda RV (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148:15–27CrossRef
70.
Zurück zum Zitat Retterer ST, Smith KL, Bjornsson CS, Neeves KB, Spence AJ, Turner JN, Shain W, Isaacson MS (2004) Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses. IEEE Trans Biomed Eng 51:2063–2073CrossRef Retterer ST, Smith KL, Bjornsson CS, Neeves KB, Spence AJ, Turner JN, Shain W, Isaacson MS (2004) Model neural prostheses with integrated microfluidics: a potential intervention strategy for controlling reactive cell and tissue responses. IEEE Trans Biomed Eng 51:2063–2073CrossRef
71.
Zurück zum Zitat Williams JC, Holecko MM, Massia SP, Rousche P, Kipke DR (2005) Multi-site incorporation of bioactive matrices into MEMS-based neural probes. J Neural Eng 2:L23–L28 Williams JC, Holecko MM, Massia SP, Rousche P, Kipke DR (2005) Multi-site incorporation of bioactive matrices into MEMS-based neural probes. J Neural Eng 2:L23–L28
72.
Zurück zum Zitat Metz S, Holzer R, Renaud P (2001) Polyimide-based microfluidic devices. Lab Chip 1:29–34CrossRef Metz S, Holzer R, Renaud P (2001) Polyimide-based microfluidic devices. Lab Chip 1:29–34CrossRef
73.
Zurück zum Zitat Rohatgi P, Langhals NB, Kipke DR, Patil PG (2009) In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurg Focus 27:E8CrossRef Rohatgi P, Langhals NB, Kipke DR, Patil PG (2009) In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurg Focus 27:E8CrossRef
74.
Zurück zum Zitat Cui X, Hetke JF, Wiler JA, Anderson DJ, Martin DC (2001) Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens Actuators A 93:8–18CrossRef Cui X, Hetke JF, Wiler JA, Anderson DJ, Martin DC (2001) Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens Actuators A 93:8–18CrossRef
75.
Zurück zum Zitat Cui X, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens Actuators B Chem 89:92–102CrossRef Cui X, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens Actuators B Chem 89:92–102CrossRef
76.
Zurück zum Zitat Yang J, Kim DH, Hendricks JL, Leach M, Northey R, Martin DC (2005) Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater 1:125–136CrossRef Yang J, Kim DH, Hendricks JL, Leach M, Northey R, Martin DC (2005) Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater 1:125–136CrossRef
77.
Zurück zum Zitat Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3:59–70CrossRef Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3:59–70CrossRef
78.
Zurück zum Zitat Lind G, Linsmeier CE, Schouenborg J (2013) The density difference between tissue and neural probes is a key factor for glial scarring. Sci Rep 3:2942 Lind G, Linsmeier CE, Schouenborg J (2013) The density difference between tissue and neural probes is a key factor for glial scarring. Sci Rep 3:2942
79.
Zurück zum Zitat Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong JP, Ahn JP, Kwak J, Jeon D, Kotov NA, Kim B (2014) Subcellular neural probes from single-crystal gold nanowires. ACS Nano 8:8182–8189CrossRef Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong JP, Ahn JP, Kwak J, Jeon D, Kotov NA, Kim B (2014) Subcellular neural probes from single-crystal gold nanowires. ACS Nano 8:8182–8189CrossRef
80.
Zurück zum Zitat Edell DJ, Toi VV, McNeil VM, Clark LD (1992) Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans Biomed Eng 39:635–643CrossRef Edell DJ, Toi VV, McNeil VM, Clark LD (1992) Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans Biomed Eng 39:635–643CrossRef
81.
Zurück zum Zitat Bjornsson CS, Oh SJ, Al-Kofahi YA, Lim YJ, Smith KL, Turner JN, De S, Roysam B, Shain W, Kim SJ (2006) Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J Neural Eng 3:196–207CrossRef Bjornsson CS, Oh SJ, Al-Kofahi YA, Lim YJ, Smith KL, Turner JN, De S, Roysam B, Shain W, Kim SJ (2006) Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J Neural Eng 3:196–207CrossRef
82.
Zurück zum Zitat Welkenhuysen M, Andrei A, Ameye L, Eberle W, Nuttin B (2011) Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe. IEEE Trans Biomed Eng 58:3250–3259CrossRef Welkenhuysen M, Andrei A, Ameye L, Eberle W, Nuttin B (2011) Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe. IEEE Trans Biomed Eng 58:3250–3259CrossRef
83.
Zurück zum Zitat Kim YT, Hitchcock RW, Bridge MJ, Tresco PA (2004) Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials 25:2229–2237CrossRef Kim YT, Hitchcock RW, Bridge MJ, Tresco PA (2004) Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials 25:2229–2237CrossRef
84.
Zurück zum Zitat Thelin J, Jorntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE (2011) Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One 6:e16267CrossRef Thelin J, Jorntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE (2011) Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One 6:e16267CrossRef
85.
Zurück zum Zitat Lind G, Gallentoft L, Danielsen N, Schouenborg J, Pettersson LM (2012) Multiple implants do not aggravate the tissue reaction in rat brain. PLoS One 7:e47509CrossRef Lind G, Gallentoft L, Danielsen N, Schouenborg J, Pettersson LM (2012) Multiple implants do not aggravate the tissue reaction in rat brain. PLoS One 7:e47509CrossRef
86.
Zurück zum Zitat Fernandez E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sanchez C, Alfaro A, Normann RA (2014) Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 7:24CrossRef Fernandez E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sanchez C, Alfaro A, Normann RA (2014) Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 7:24CrossRef
87.
Zurück zum Zitat Linsmeier CE, Thelin J, Danielsen N (2011) Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces. Prog Brain Res 194:181–189CrossRef Linsmeier CE, Thelin J, Danielsen N (2011) Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces. Prog Brain Res 194:181–189CrossRef
88.
Zurück zum Zitat Potter-Baker KA, Ravikumar M, Burke AA, Meador WD, Householder KT, Buck AC, Sunil S, Stewart WG, Anna JP, Tomaszewski WH, Capadona JR (2014) A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials 35:5637 Potter-Baker KA, Ravikumar M, Burke AA, Meador WD, Householder KT, Buck AC, Sunil S, Stewart WG, Anna JP, Tomaszewski WH, Capadona JR (2014) A comparison of neuroinflammation to implanted microelectrodes in rat and mouse models. Biomaterials 35:5637
89.
Zurück zum Zitat Winslow BD, Tresco PA (2010) Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex. Biomaterials 31:1558–1567CrossRef Winslow BD, Tresco PA (2010) Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex. Biomaterials 31:1558–1567CrossRef
90.
Zurück zum Zitat Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420CrossRef Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420CrossRef
Metadaten
Titel
Implantable Brain Interface: High-Density Microelectrode Array for Neural Recording
verfasst von
Sang Beom Jun
Copyright-Jahr
2015
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-017-9981-2_4

Neuer Inhalt