Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 1/2016

01.01.2016 | Review Article

Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations

verfasst von: Elliot Greenwald, Matthew R. Masters, Nitish V. Thakor

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abdelhalim K, Jafari H, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 64-channel UWB wireless neural vector analyzer SoC with a closed-loop phase synchrony-triggered neurostimulator. IEEE J Solid State Circuits 48(10):2494–2510CrossRef Abdelhalim K, Jafari H, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 64-channel UWB wireless neural vector analyzer SoC with a closed-loop phase synchrony-triggered neurostimulator. IEEE J Solid State Circuits 48(10):2494–2510CrossRef
2.
Zurück zum Zitat Abdelhalim K, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48(10):2478–2493CrossRef Abdelhalim K, Kokarovtseva L, Perez Velazquez J, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48(10):2478–2493CrossRef
3.
Zurück zum Zitat Anderson WS, Lenz FA (2006) Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol 2(6):310–320PubMedCrossRef Anderson WS, Lenz FA (2006) Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol 2(6):310–320PubMedCrossRef
4.
Zurück zum Zitat Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409PubMedPubMedCentralCrossRef Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ (2014) Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(5):1394–1409PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Asanuma H, Stoney SD, Abzug C (1968) Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol 31(5):670–681PubMed Asanuma H, Stoney SD, Abzug C (1968) Relationship between afferent input and motor outflow in cat motorsensory cortex. J Neurophysiol 31(5):670–681PubMed
6.
Zurück zum Zitat Avestruz AT, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, Denison T (2008) A 5 \(\mu W\)/Channel spectral analysis IC for chronic bidirectional brain machine interfaces. IEEE J Solid State Circuits 43(12):3006–3024CrossRef Avestruz AT, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, Denison T (2008) A 5 \(\mu W\)/Channel spectral analysis IC for chronic bidirectional brain machine interfaces. IEEE J Solid State Circuits 43(12):3006–3024CrossRef
7.
Zurück zum Zitat Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J Solid State Circuits 46(4):731–745CrossRef Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J Solid State Circuits 46(4):731–745CrossRef
8.
Zurück zum Zitat Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat. IEEE Trans Biomed Eng 58(9):2589–2597PubMedCrossRef Azin M, Guggenmos D, Barbay S, Nudo R, Mohseni P (2011) A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat. IEEE Trans Biomed Eng 58(9):2589–2597PubMedCrossRef
9.
Zurück zum Zitat Benabid A, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret J, de Rougemont J, Gao D (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406PubMedCrossRef Benabid A, Pollak P, Hoffmann D, Gervason C, Hommel M, Perret J, de Rougemont J, Gao D (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406PubMedCrossRef
10.
Zurück zum Zitat Bensmaia SJ, Miller LE (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15:313–325PubMedCrossRef Bensmaia SJ, Miller LE (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15:313–325PubMedCrossRef
11.
Zurück zum Zitat Berg J, Dammann J, Tenore F, Tabot G, Boback J, Manfredi L, Peterson M, Katyal K, Johannes M, Makhlin A, Wilcox R, Franklin R, Vogelstein R, Hatsopoulos N, Bensmaia S (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21(3):500–507PubMedCrossRef Berg J, Dammann J, Tenore F, Tabot G, Boback J, Manfredi L, Peterson M, Katyal K, Johannes M, Makhlin A, Wilcox R, Franklin R, Vogelstein R, Hatsopoulos N, Bensmaia S (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21(3):500–507PubMedCrossRef
12.
Zurück zum Zitat Berger T, Ahuja A, Courellis S, Deadwyler S, Erinjippurath G, Gerhardt G, Gholmieh G, Granacki J, Hampson R, Hsaio MC, Lacoss J, Marmarelis V, Nasiatka P, Srinivasan V, Song D, Tanguay A, Wills J (2005) Restoring lost cognitive function. IEEE Eng Medi Biol Mag 24(5):30–44CrossRef Berger T, Ahuja A, Courellis S, Deadwyler S, Erinjippurath G, Gerhardt G, Gholmieh G, Granacki J, Hampson R, Hsaio MC, Lacoss J, Marmarelis V, Nasiatka P, Srinivasan V, Song D, Tanguay A, Wills J (2005) Restoring lost cognitive function. IEEE Eng Medi Biol Mag 24(5):30–44CrossRef
13.
Zurück zum Zitat Berger T, Baudry M, Brinton R, Liaw JS, Marmarelis V, Yoondong Park A, Sheu B, Tanguay A (2001) Brain-implantable biomimetic electronics as the next era in neural prosthetics. IEEE Proc 89(7):993–1012CrossRef Berger T, Baudry M, Brinton R, Liaw JS, Marmarelis V, Yoondong Park A, Sheu B, Tanguay A (2001) Brain-implantable biomimetic electronics as the next era in neural prosthetics. IEEE Proc 89(7):993–1012CrossRef
14.
Zurück zum Zitat Berger T, Song D, Chan R, Shin D, Marmarelis V, Hampson R, Sweatt A, Heck C, Liu C, Wills J, LaCoss J, Granacki J, Gerhardt G, Deadwyler S (2012) Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. IEEE Pulse 3(5):17–22PubMedCrossRef Berger T, Song D, Chan R, Shin D, Marmarelis V, Hampson R, Sweatt A, Heck C, Liu C, Wills J, LaCoss J, Granacki J, Gerhardt G, Deadwyler S (2012) Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. IEEE Pulse 3(5):17–22PubMedCrossRef
15.
Zurück zum Zitat Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017PubMedPubMedCentralCrossRef Berger TW, Hampson RE, Song D, Goonawardena A, Marmarelis VZ, Deadwyler SA (2011) A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng 8(4):046017PubMedPubMedCentralCrossRef
16.
17.
Zurück zum Zitat Beverlin B II, Netoff TI (2013) Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation. Front Neural Circuits 6(126):1–9 Beverlin B II, Netoff TI (2013) Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation. Front Neural Circuits 6(126):1–9
18.
Zurück zum Zitat Biederman W, Yeager D, Narevsky N, Leverett J, Neely R, Carmena J, Alon E, Rabaey J (2015) A 4.78 \(mm^2\) fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation. IEEE J Solid State Circuits 50(4):1038–1047CrossRef Biederman W, Yeager D, Narevsky N, Leverett J, Neely R, Carmena J, Alon E, Rabaey J (2015) A 4.78 \(mm^2\) fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation. IEEE J Solid State Circuits 50(4):1038–1047CrossRef
19.
Zurück zum Zitat Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5(1):14–25PubMedPubMedCentralCrossRef Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5(1):14–25PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107(1):364–383PubMedPubMedCentralCrossRef Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107(1):364–383PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedPubMedCentralCrossRef Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Miller Koop M, Bronte-Stewart H, Grill WM (2013) Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp Neurol 239:60–67PubMedPubMedCentralCrossRef Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Miller Koop M, Bronte-Stewart H, Grill WM (2013) Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp Neurol 239:60–67PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B (2009) The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 215(1):20–28PubMedCrossRef Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B (2009) The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 215(1):20–28PubMedCrossRef
24.
Zurück zum Zitat Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038PubMed Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038PubMed
25.
Zurück zum Zitat Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Systems Rehabil Eng 17(4):312–321CrossRef Chae MS, Yang Z, Yuce MR, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Systems Rehabil Eng 17(4):312–321CrossRef
26.
Zurück zum Zitat Chan AM, Sun FT, Boto EH, Wingeier BM (2008) Automated seizure onset detection for accurate onset time determination in intracranial EEG. Clin Neurophysiol 119(12):2687–2696PubMedCrossRef Chan AM, Sun FT, Boto EH, Wingeier BM (2008) Automated seizure onset detection for accurate onset time determination in intracranial EEG. Clin Neurophysiol 119(12):2687–2696PubMedCrossRef
27.
Zurück zum Zitat Chan CH, Wills J, LaCoss J, Granacki J, Choma J (2006) A micro-power low-noise auto-zeroing CMOS amplifier for cortical neural prostheses. In: IEEE on biomedical circuits and systems conference, 2006, BioCAS 2006, pp 214–217 Chan CH, Wills J, LaCoss J, Granacki J, Choma J (2006) A micro-power low-noise auto-zeroing CMOS amplifier for cortical neural prostheses. In: IEEE on biomedical circuits and systems conference, 2006, BioCAS 2006, pp 214–217
28.
Zurück zum Zitat Chen WM, Chiueh H, Chen TJ, Ho CL, Jeng C, Ker MD, Lin CY, Huang YC, Chou CW, Fan TY, Cheng MS, Hsin YL, Liang SF, Wang YL, Shaw FZ, Huang YH, Yang CH, Wu CY (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid State Circuits 49(1):232–247CrossRef Chen WM, Chiueh H, Chen TJ, Ho CL, Jeng C, Ker MD, Lin CY, Huang YC, Chou CW, Fan TY, Cheng MS, Hsin YL, Liang SF, Wang YL, Shaw FZ, Huang YH, Yang CH, Wu CY (2014) A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J Solid State Circuits 49(1):232–247CrossRef
29.
Zurück zum Zitat Clippinger FW, Avery R, Titus B (1974) A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res 22:247–258 Clippinger FW, Avery R, Titus B (1974) A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res 22:247–258
30.
Zurück zum Zitat Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedPubMedCentralCrossRef Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609PubMedPubMedCentralCrossRef Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat D’Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50(5):603–615PubMedCrossRef D’Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50(5):603–615PubMedCrossRef
33.
Zurück zum Zitat de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci 110(12):4780–4785PubMedPubMedCentralCrossRef de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA (2013) Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci 110(12):4780–4785PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6(1):1–13PubMedPubMedCentralCrossRef Deng ZD, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6(1):1–13PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2\(\mu W\) 100 nV/\(\sqrt{Hz}\) chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid State Circuits 42(12):2934–2945CrossRef Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2\(\mu W\) 100 nV/\(\sqrt{Hz}\) chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid State Circuits 42(12):2934–2945CrossRef
36.
Zurück zum Zitat Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz MC, Tamma F, Tröster AI, Vitek JL et al (2006) Deep brain stimulation: postoperative issues. Mov Disord 21(S14):S219–S237PubMedCrossRef Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz MC, Tamma F, Tröster AI, Vitek JL et al (2006) Deep brain stimulation: postoperative issues. Mov Disord 21(S14):S219–S237PubMedCrossRef
37.
Zurück zum Zitat Dhillon G, Horch K (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472PubMedCrossRef Dhillon G, Horch K (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472PubMedCrossRef
38.
Zurück zum Zitat Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW (2004) Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg 29(4):605–615CrossRef Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW (2004) Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg 29(4):605–615CrossRef
39.
Zurück zum Zitat Drolet J, Semmaoui H, Sawan M (2011) Low-power energy-based CMOS digital detector for neural recording arrays. In: IEEE on biomedical circuits and systems conference (BioCAS), pp 13–16 Drolet J, Semmaoui H, Sawan M (2011) Low-power energy-based CMOS digital detector for neural recording arrays. In: IEEE on biomedical circuits and systems conference (BioCAS), pp 13–16
40.
41.
42.
Zurück zum Zitat Engel AK, Moll CK, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47PubMedCrossRef Engel AK, Moll CK, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47PubMedCrossRef
43.
Zurück zum Zitat Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371PubMedPubMedCentralCrossRef Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485(7398):368–371PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Fang X, Wills J, Granacki J, LaCoss J, Choma J (2008) CMOS charge-metering microstimulator for implantable prosthetic device. In: 51st Midwest symposium on circuits and Systems, MWSCAS, pp 826–829 Fang X, Wills J, Granacki J, LaCoss J, Choma J (2008) CMOS charge-metering microstimulator for implantable prosthetic device. In: 51st Midwest symposium on circuits and Systems, MWSCAS, pp 826–829
45.
Zurück zum Zitat Feng XJ, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14PubMedCrossRef Feng XJ, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14PubMedCrossRef
46.
Zurück zum Zitat Fetz EE (2015) Chapter 12–restoring motor function with bidirectional neural interfaces. In: Dancause N, Nadeau S, Rossignol S (eds) Sensorimotor rehabilitation at the crossroads of basic and clinical sciences, vol 218 of progress in brain research. Elsevier, Amsterdam, pp 241–252 Fetz EE (2015) Chapter 12–restoring motor function with bidirectional neural interfaces. In: Dancause N, Nadeau S, Rossignol S (eds) Sensorimotor rehabilitation at the crossroads of basic and clinical sciences, vol 218 of progress in brain research. Elsevier, Amsterdam, pp 241–252
47.
Zurück zum Zitat Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908PubMedCrossRef Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908PubMedCrossRef
48.
Zurück zum Zitat Fisher RS, Velasco AL (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10(5):261–270PubMedCrossRef Fisher RS, Velasco AL (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10(5):261–270PubMedCrossRef
49.
Zurück zum Zitat Fitzgerald J, Lacour SP, McMahon S, Fawcett J (2009) Microchannel electrodes for recording and stimulation: in vitro evaluation. IEEE Trans Biomed Eng 56(5):1524–1534PubMedCrossRef Fitzgerald J, Lacour SP, McMahon S, Fawcett J (2009) Microchannel electrodes for recording and stimulation: in vitro evaluation. IEEE Trans Biomed Eng 56(5):1524–1534PubMedCrossRef
50.
Zurück zum Zitat Fitzsimmons N, Drake W, Hanson T, Lebedev M, Nicolelis M (2007) Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 27(21):5593–5602PubMedCrossRef Fitzsimmons N, Drake W, Hanson T, Lebedev M, Nicolelis M (2007) Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 27(21):5593–5602PubMedCrossRef
51.
Zurück zum Zitat Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. effects of visual information on accuracy. J Neurophysiol 73(1):361–372PubMed Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. effects of visual information on accuracy. J Neurophysiol 73(1):361–372PubMed
52.
Zurück zum Zitat Gosselin B, Sawan M (2009) An ultra low-power CMOS automatic action potential detector. IEEE Trans Neural Syst Rehabil Eng 17(4):346–353PubMedCrossRef Gosselin B, Sawan M (2009) An ultra low-power CMOS automatic action potential detector. IEEE Trans Neural Syst Rehabil Eng 17(4):346–353PubMedCrossRef
53.
Zurück zum Zitat Guggenmos DJ, Azin M, Barbay S, Mahnken JD, Dunham C, Mohseni P, Nudo RJ (2013) Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci 110(52):21177–21182PubMedPubMedCentralCrossRef Guggenmos DJ, Azin M, Barbay S, Mahnken JD, Dunham C, Mohseni P, Nudo RJ (2013) Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci 110(52):21177–21182PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Hampson R, Song D, Chan R, Sweatt A, Riley M, Gerhardt G, Shin D, Marmarelis V, Berger T, Deadwyler S (2012) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Trans Neural Syst Rehabil Eng 20(2):184–197PubMedPubMedCentralCrossRef Hampson R, Song D, Chan R, Sweatt A, Riley M, Gerhardt G, Shin D, Marmarelis V, Berger T, Deadwyler S (2012) A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Trans Neural Syst Rehabil Eng 20(2):184–197PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10(6):066013PubMedPubMedCentralCrossRef Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10(6):066013PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781):1938–1947PubMedPubMedCentralCrossRef Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781):1938–1947PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133CrossRef Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid State Circuits 42(1):123–133CrossRef
58.
Zurück zum Zitat Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the rns system pivotal trial. Epilepsia 55(3):432–441PubMedPubMedCentralCrossRef Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the rns system pivotal trial. Epilepsia 55(3):432–441PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Pvd Smagt, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedPubMedCentralCrossRef Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, Pvd Smagt, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Hsiao SS, Fettiplace M, Darbandi B (2011) Sensory feedback for upper limb prostheses. In: Lepore F, Green A, Elaine Chapman C, Kalaska JF (eds) Progress in brain research, vol 192. Elsevier, Philadelphia, PA, USA, pp 69–81 Hsiao SS, Fettiplace M, Darbandi B (2011) Sensory feedback for upper limb prostheses. In: Lepore F, Green A, Elaine Chapman C, Kalaska JF (eds) Progress in brain research, vol 192. Elsevier, Philadelphia, PA, USA, pp 69–81
62.
Zurück zum Zitat Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444(7115):56–60PubMedCrossRef Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444(7115):56–60PubMedCrossRef
63.
Zurück zum Zitat Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97(1):360–374PubMedCrossRef Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97(1):360–374PubMedCrossRef
64.
Zurück zum Zitat Johnson KO, Hsiao SS (1992) Neural mechanisms of tactual form and texture perception. Ann Rev Neurosci 15(1):227–250PubMedCrossRef Johnson KO, Hsiao SS (1992) Neural mechanisms of tactual form and texture perception. Ann Rev Neurosci 15(1):227–250PubMedCrossRef
65.
Zurück zum Zitat Jung R, Brauer EJ, Abbas JJ (2001) Real-time interaction between a neuromorphic electronic circuit and the spinal cord. IEEE Trans Neural Syst Rehabil Eng 9(3):319–326PubMedPubMedCentralCrossRef Jung R, Brauer EJ, Abbas JJ (2001) Real-time interaction between a neuromorphic electronic circuit and the spinal cord. IEEE Trans Neural Syst Rehabil Eng 9(3):319–326PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Kaiser J (1990) On a simple algorithm to calculate the ‘energy’ of a signal. In: 1990 international conference on acoustics, speech, and signal processing, ICASSP-90, vol. 1, pp 381–384 Kaiser J (1990) On a simple algorithm to calculate the ‘energy’ of a signal. In: 1990 international conference on acoustics, speech, and signal processing, ICASSP-90, vol. 1, pp 381–384
67.
Zurück zum Zitat Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehabil Eng 20(2):153–160PubMedCrossRef Kerr CC, Neymotin SA, Chadderdon GL, Fietkiewicz CT, Francis JT, Lytton WW (2012) Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehabil Eng 20(2):153–160PubMedCrossRef
68.
Zurück zum Zitat Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838PubMedPubMedCentralCrossRef Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–11838PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2(3):145–156PubMedCrossRef Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2(3):145–156PubMedCrossRef
70.
Zurück zum Zitat Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI et al (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory \(\beta\) activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173PubMedCrossRef Kühn AA, Kempf F, Brücke C, Doyle LG, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI et al (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory \(\beta\) activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28(24):6165–6173PubMedCrossRef
71.
Zurück zum Zitat Kühn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23(7):1956–1960PubMedCrossRef Kühn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23(7):1956–1960PubMedCrossRef
72.
Zurück zum Zitat Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, Callaghan OJ, Eisenberg E, Milbouw G et al (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132(1):179–188PubMedCrossRef Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, Callaghan OJ, Eisenberg E, Milbouw G et al (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132(1):179–188PubMedCrossRef
73.
Zurück zum Zitat Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441PubMedCrossRef Kuncel AM, Grill WM (2004) Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 115(11):2431–2441PubMedCrossRef
74.
Zurück zum Zitat Kuo MF, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tdcs) in neuropsychiatric diseases. Neuroimage 85:948–960PubMedCrossRef Kuo MF, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation with direct currents (tdcs) in neuropsychiatric diseases. Neuroimage 85:948–960PubMedCrossRef
75.
Zurück zum Zitat Lacour SP, Fitzgerald J, Lago N, Tarte E, McMahon S, Fawcett J (2009) Long micro-channel electrode arrays: A novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng 17(5):454–460PubMedCrossRef Lacour SP, Fitzgerald J, Lago N, Tarte E, McMahon S, Fawcett J (2009) Long micro-channel electrode arrays: A novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng 17(5):454–460PubMedCrossRef
76.
Zurück zum Zitat Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE (2014) Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front Neuroeng 7(40):1–15 Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE (2014) Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with neurorighter. Front Neuroeng 7(40):1–15
77.
Zurück zum Zitat Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17(2):322–329PubMedCrossRef Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17(2):322–329PubMedCrossRef
78.
Zurück zum Zitat Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WRS, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate after discharges caused by cortical stimulation. Neurology 53(9):2073–2073PubMedCrossRef Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WRS, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate after discharges caused by cortical stimulation. Neurology 53(9):2073–2073PubMedCrossRef
79.
Zurück zum Zitat Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinsons disease. Brain 125(6):1196–1209PubMedCrossRef Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinsons disease. Brain 125(6):1196–1209PubMedCrossRef
80.
Zurück zum Zitat Liew S, Santarnecchi E, Buch E, Cohen L (2014) Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Human Neurosci 8:378CrossRef Liew S, Santarnecchi E, Buch E, Cohen L (2014) Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Human Neurosci 8:378CrossRef
81.
Zurück zum Zitat Little S, Brown P (2012) What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci 1265(1):9–24PubMedPubMedCentralCrossRef Little S, Brown P (2012) What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci 1265(1):9–24PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Mavoori J, Jackson A, Diorio C, Fetz E (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148(1):71–77PubMedCrossRef Mavoori J, Jackson A, Diorio C, Fetz E (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148(1):71–77PubMedCrossRef
84.
Zurück zum Zitat Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRef Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRef
86.
Zurück zum Zitat Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13):1295–1304PubMedCrossRef Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13):1295–1304PubMedCrossRef
87.
Zurück zum Zitat Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy report of the guideline development subcommittee of the american academy of neurology. Neurology 81(16):1453–1459PubMedPubMedCentralCrossRef Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C (2013) Evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy report of the guideline development subcommittee of the american academy of neurology. Neurology 81(16):1453–1459PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243CrossRef Muller R, Gambini S, Rabaey J (2012) A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J Solid State Circuits 47(1):232–243CrossRef
91.
Zurück zum Zitat Newman JP, Zeller-Townson R, Mf Fong, Arcot Desai S, Gross RE, Potter SM (2013) Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front Neural Circuits 6(98):1–18 Newman JP, Zeller-Townson R, Mf Fong, Arcot Desai S, Gross RE, Potter SM (2013) Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front Neural Circuits 6(98):1–18
92.
Zurück zum Zitat Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1431-3 Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54(1). doi:10.​1007/​s11517-015-1431-3
93.
Zurück zum Zitat Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE (2013) Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5):1301–1309PubMedPubMedCentralCrossRef Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE (2013) Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5):1301–1309PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7(57):1–9 Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7(57):1–9
95.
Zurück zum Zitat Nitsche MA, Paulus W (2011) Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci 29(6):463–492PubMed Nitsche MA, Paulus W (2011) Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci 29(6):463–492PubMed
96.
Zurück zum Zitat Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794PubMedCrossRef Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794PubMedCrossRef
97.
Zurück zum Zitat Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354(9189):1526PubMedCrossRef Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354(9189):1526PubMedCrossRef
98.
Zurück zum Zitat Ochoa J, Torebjörk E (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol 342(1):633–654PubMedPubMedCentralCrossRef Ochoa J, Torebjörk E (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol 342(1):633–654PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3(20):1–10 O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain-machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3(20):1–10
100.
Zurück zum Zitat O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479(7372):228–231PubMedPubMedCentralCrossRef O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479(7372):228–231PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012) Closing the loop in primate prefrontal cortex: Inter-laminar processing. Front Neural Circuits 6(88):1–13 Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012) Closing the loop in primate prefrontal cortex: Inter-laminar processing. Front Neural Circuits 6(88):1–13
102.
Zurück zum Zitat Parthasarathy AB, Fox DJ, Dunn AK, Weber EL, Richards LM (2010) Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15(6):066030–066030PubMedCrossRef Parthasarathy AB, Fox DJ, Dunn AK, Weber EL, Richards LM (2010) Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15(6):066030–066030PubMedCrossRef
103.
Zurück zum Zitat Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1430-4 Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro and nano-electrodes for neural recording. Med Biol Eng Comput 54(1). doi:10.​1007/​s11517-015-1430-4
104.
Zurück zum Zitat Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70PubMedPubMedCentralCrossRef Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke a critical appraisal. Stroke 40(5):1926–1931PubMedPubMedCentralCrossRef Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke a critical appraisal. Stroke 40(5):1926–1931PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437PubMedPubMedCentralCrossRef Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252(5014):1857–1860PubMedCrossRef Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252(5014):1857–1860PubMedCrossRef
108.
Zurück zum Zitat Priori A, Foffani G, Pesenti A, Tamma F, Bianchi A, Pellegrini M, Locatelli M, Moxon K, Villani R (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189(2):369–379PubMedCrossRef Priori A, Foffani G, Pesenti A, Tamma F, Bianchi A, Pellegrini M, Locatelli M, Moxon K, Villani R (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189(2):369–379PubMedCrossRef
109.
Zurück zum Zitat Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86PubMedCrossRef Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86PubMedCrossRef
110.
Zurück zum Zitat Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E et al (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6(222):222ra19–222ra19PubMedCrossRef Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E et al (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6(222):222ra19–222ra19PubMedCrossRef
111.
Zurück zum Zitat Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE (2010) Rewiring neural interactions by micro-stimulation. Front Syst Neurosci 4(39):1–15 Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE (2010) Rewiring neural interactions by micro-stimulation. Front Syst Neurosci 4(39):1–15
112.
Zurück zum Zitat Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA (2000) Connecting brains to robots: an artificial body for studying the computational properties of neural tissues. Artif Life 6(4):307–324PubMedCrossRef Reger BD, Fleming KM, Sanguineti V, Alford S, Mussa-Ivaldi FA (2000) Connecting brains to robots: an artificial body for studying the computational properties of neural tissues. Artif Life 6(4):307–324PubMedCrossRef
113.
Zurück zum Zitat Rhew HG, Jeong J, Fredenburg J, Dodani S, Patil P, Flynn M (2014) A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits 99:1–15 Rhew HG, Jeong J, Fredenburg J, Dodani S, Patil P, Flynn M (2014) A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid State Circuits 99:1–15
114.
Zurück zum Zitat Romo R, Hernndez A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278PubMedCrossRef Romo R, Hernndez A, Zainos A, Brody CD, Lemus L (2000) Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278PubMedCrossRef
115.
Zurück zum Zitat Romo R, Hernndez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387PubMedCrossRef Romo R, Hernndez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387PubMedCrossRef
116.
Zurück zum Zitat Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384PubMedCrossRef Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384PubMedCrossRef
117.
Zurück zum Zitat Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Pino GD, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783PubMedCrossRef Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Pino GD, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783PubMedCrossRef
118.
Zurück zum Zitat Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, Gupta R, Molnar GF, Moran DW, Denison TJ (2011) A chronic generalized bi-directional brain machine interface. J Neural Eng 8(3):036018PubMedPubMedCentralCrossRef Rouse AG, Stanslaski SR, Cong P, Jensen RM, Afshar P, Ullestad D, Gupta R, Molnar GF, Moran DW, Denison TJ (2011) A chronic generalized bi-directional brain machine interface. J Neural Eng 8(3):036018PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73(2):820–835PubMed Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73(2):820–835PubMed
120.
Zurück zum Zitat Sasada S, Kato K, Kadowaki S, Groiss SJ, Ugawa Y, Komiyama T, Nishimura Y (2014) Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man. J Neurosci 34(33):11131–11142PubMedCrossRef Sasada S, Kato K, Kadowaki S, Groiss SJ, Ugawa Y, Komiyama T, Nishimura Y (2014) Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man. J Neurosci 34(33):11131–11142PubMedCrossRef
121.
Zurück zum Zitat Schiefer MA, Freeberg M, Pinault GJC, Anderson J, Hoyen H, Tyler DJ, Triolo RJ (2013) Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng 10(5):056006PubMedCrossRef Schiefer MA, Freeberg M, Pinault GJC, Anderson J, Hoyen H, Tyler DJ, Triolo RJ (2013) Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode. J Neural Eng 10(5):056006PubMedCrossRef
122.
Zurück zum Zitat Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220PubMedCrossRef Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220PubMedCrossRef
123.
Zurück zum Zitat Sherman DL, Tsai YC, Rossell LA, Mirski MA, Thakor NV (1997) Spectral analysis of a thalamus-to-cortex seizure pathway. IEEE Trans Biomed Eng 44(8):657–664PubMedCrossRef Sherman DL, Tsai YC, Rossell LA, Mirski MA, Thakor NV (1997) Spectral analysis of a thalamus-to-cortex seizure pathway. IEEE Trans Biomed Eng 44(8):657–664PubMedCrossRef
124.
Zurück zum Zitat Silberstein P, Pogosyan A, Kühn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P (2005) Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(6):1277–1291PubMedCrossRef Silberstein P, Pogosyan A, Kühn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P (2005) Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(6):1277–1291PubMedCrossRef
125.
Zurück zum Zitat Song W, Kerr CC, Lytton WW, Francis JT (2013) Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PloS one 8(3):e57453PubMedPubMedCentralCrossRef Song W, Kerr CC, Lytton WW, Francis JT (2013) Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PloS one 8(3):e57453PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T (2012) Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng 20(4):410–421PubMedCrossRef Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T (2012) Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng 20(4):410–421PubMedCrossRef
127.
Zurück zum Zitat Stewart JD (2003) Peripheral nerve fascicles: Anatomy and clinical relevance. Muscle Nerve 28(5):525–541PubMedCrossRef Stewart JD (2003) Peripheral nerve fascicles: Anatomy and clinical relevance. Muscle Nerve 28(5):525–541PubMedCrossRef
128.
Zurück zum Zitat Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain machine interface control. J Neurosci 30(50):16777–16787PubMedPubMedCentralCrossRef Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain machine interface control. J Neurosci 30(50):16777–16787PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci 110(45):18279–18284PubMedPubMedCentralCrossRef Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci 110(45):18279–18284PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Tan D, Schiefer M, Keith MW, Anderson R, Tyler DJ (2013) Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp 859–862 Tan D, Schiefer M, Keith MW, Anderson R, Tyler DJ (2013) Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in a human amputee. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp 859–862
131.
Zurück zum Zitat Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ (2014) A neural interface provides long-term stable natural touch perception. Sci Transl Med 6(257):257ra138PubMedCrossRef Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ (2014) A neural interface provides long-term stable natural touch perception. Sci Transl Med 6(257):257ra138PubMedCrossRef
132.
Zurück zum Zitat Tessadori J, Bisio M, Martinoia S, Chiappalone M (2012) Modular neuronal assemblies embodied in a closed-loop environment: towards future integration of brains and machines. Front Neural Circuits 6(99):1–16 Tessadori J, Bisio M, Martinoia S, Chiappalone M (2012) Modular neuronal assemblies embodied in a closed-loop environment: towards future integration of brains and machines. Front Neural Circuits 6(99):1–16
133.
Zurück zum Zitat Tyler DJ, Durand DM (2003) Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann Biomed Eng 31(6):633–642PubMedCrossRef Tyler DJ, Durand DM (2003) Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann Biomed Eng 31(6):633–642PubMedCrossRef
134.
Zurück zum Zitat Vagus Nerve Stimulation Study Group (1995) A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45:224–230CrossRef Vagus Nerve Stimulation Study Group (1995) A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45:224–230CrossRef
135.
Zurück zum Zitat Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan A (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits 45(4):804–816CrossRef Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan A (2010) A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid State Circuits 45(4):804–816CrossRef
136.
Zurück zum Zitat Volkmann J, Moro E, Pahwa R (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 21(S14):S284–S289PubMedCrossRef Volkmann J, Moro E, Pahwa R (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 21(S14):S284–S289PubMedCrossRef
137.
Zurück zum Zitat Weber DJ, Friesen R, Miller LE (2012) Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. J Motor Behav 44(6):403–418CrossRef Weber DJ, Friesen R, Miller LE (2012) Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. J Motor Behav 44(6):403–418CrossRef
138.
Zurück zum Zitat Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202CrossRef Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202CrossRef
139.
Zurück zum Zitat Yoo J, Yan L, El-Damak D, Altaf M, Shoeb A, Chandrakasan A (2013) An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J Solid State Circuits 48(1):214–228CrossRef Yoo J, Yan L, El-Damak D, Altaf M, Shoeb A, Chandrakasan A (2013) An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J Solid State Circuits 48(1):214–228CrossRef
140.
Zurück zum Zitat Zanos S, Richardson A, Shupe L, Miles F, Fetz E (2011) The neurochip-2: An autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. IEEE Trans Neural Syst Rehabil Eng 19(4):427–435PubMedPubMedCentralCrossRef Zanos S, Richardson A, Shupe L, Miles F, Fetz E (2011) The neurochip-2: An autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. IEEE Trans Neural Syst Rehabil Eng 19(4):427–435PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Zhang F, Mishra A, Richardson A, Otis B (2011) A low-power ECoG/EEG processing IC with integrated multiband energy extractor. IEEE Trans Circuits Systems I Regular Papers 58(9):2069–2082CrossRef Zhang F, Mishra A, Richardson A, Otis B (2011) A low-power ECoG/EEG processing IC with integrated multiband energy extractor. IEEE Trans Circuits Systems I Regular Papers 58(9):2069–2082CrossRef
142.
Zurück zum Zitat Zhang Y, Zhang F, Shakhsheer Y, Silver J, Klinefelter A, Nagaraju M, Boley J, Pandey J, Shrivastava A, Carlson E, Wood A, Calhoun B, Otis B (2013) A batteryless 19 \(\mu W\) MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid State Circuits 48(1):199–213CrossRef Zhang Y, Zhang F, Shakhsheer Y, Silver J, Klinefelter A, Nagaraju M, Boley J, Pandey J, Shrivastava A, Carlson E, Wood A, Calhoun B, Otis B (2013) A batteryless 19 \(\mu W\) MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Solid State Circuits 48(1):199–213CrossRef
Metadaten
Titel
Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations
verfasst von
Elliot Greenwald
Matthew R. Masters
Nitish V. Thakor
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 1/2016
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-015-1429-x

Weitere Artikel der Ausgabe 1/2016

Medical & Biological Engineering & Computing 1/2016 Zur Ausgabe

Premium Partner