Skip to main content
Erschienen in: Wireless Networks 7/2022

29.05.2022 | Original Paper

Improve the quality of charging services for rechargeable wireless sensor networks by deploying a mobile vehicle with multiple removable chargers

verfasst von: ZhanSheng Chen, Hui Tian, Hong Shen

Erschienen in: Wireless Networks | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing demand for real-time applications of Wireless Sensor Networks (WSNs) makes Quality of Service (QoS)-based charging scheduling models an interesting and hot research topic. Satisfying QoS requirements (e.g. data collection integrity, charging respond delay, etc.) for the different applications of WSNs raises significant challenges. More precisely, an effective scheduling strategy not only needs to improve the charging efficiency of charging vehicles but also needs to reduce the charging respond delay of the requests to be charged, all of which must be based on the integrity of data collection. For such applications, existing studies on charging issue often deployed one or more mobile vehicles, which have deficiencies in practical applications. On one hand, it usually is insufficient to employ just one vehicle to charge many sensors in a large-scale application scenario due to the limited battery capacity of the charging vehicle or energy depletion of some sensors before the arrival of the charging vehicle. On the other hand, while the collaboration between multiple vehicles for large-scale WSNs can significantly increase charging capacity, the cost is too high in terms of the initial investment and maintenance costs of these vehicles. To overcome these deficits, in this work, we propose a novel QoS-based on-demand charge scheduling (abbreviated shortly as QOCS) model that one charging vehicle carries multiple removable battery powered chargers. In the novel QoS-based charging model, we study the charging scheduling problem of requesting nodes to guarantee the integrity of network data collection and maximize the satisfaction of charging services. In the QOCS model, We jointly consider the coverage contribution and energy urgency to sort the charging requests of sensors, and introduce a hybrid power supply mechanism based on supply and demand to improve energy utilization. We evaluate the performance of the proposed model through extensive simulation and experimental results show that our model achieves better performance than existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kurs, A., Moffatt, R., & Soljacic, M. (2010). Simultaneous mid-range power transfer to multiple devices. Applied Physics Letters, 96(4), 34.CrossRef Kurs, A., Moffatt, R., & Soljacic, M. (2010). Simultaneous mid-range power transfer to multiple devices. Applied Physics Letters, 96(4), 34.CrossRef
2.
Zurück zum Zitat Zou, T., Xu, W., Liang, W., Peng, J., Cai, Y., & Wang, T. (2017). Improving charging capacity for wireless sensor networks by deploying one mobile vehicle with multiple removable chargers. Ad Hoc Networks, 63, 79–90.CrossRef Zou, T., Xu, W., Liang, W., Peng, J., Cai, Y., & Wang, T. (2017). Improving charging capacity for wireless sensor networks by deploying one mobile vehicle with multiple removable chargers. Ad Hoc Networks, 63, 79–90.CrossRef
3.
Zurück zum Zitat Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef
4.
Zurück zum Zitat He, L., Kong, L., Gu, Y., Pan, J., & Zhu, T. (2015). Evaluating the on-demand mobile charging in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(9), 1861–1875.CrossRef He, L., Kong, L., Gu, Y., Pan, J., & Zhu, T. (2015). Evaluating the on-demand mobile charging in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(9), 1861–1875.CrossRef
5.
Zurück zum Zitat Lin, C., Wang, Z., Han, D., Wu, Y., Yu, C. W., & Wu, G. (2016). TADP: Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks. Journal of Systems Architecture, 70, 26–38.CrossRef Lin, C., Wang, Z., Han, D., Wu, Y., Yu, C. W., & Wu, G. (2016). TADP: Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks. Journal of Systems Architecture, 70, 26–38.CrossRef
6.
Zurück zum Zitat Zhong, P., Zhang, Y., Ma, S., Xiaoyan, K., & Gao, J. (2018). RCSS: A real-time on-demand charging scheduling scheme for wireless rechargeable sensor networks. Sensors, 18(5), 1601–1618.CrossRef Zhong, P., Zhang, Y., Ma, S., Xiaoyan, K., & Gao, J. (2018). RCSS: A real-time on-demand charging scheduling scheme for wireless rechargeable sensor networks. Sensors, 18(5), 1601–1618.CrossRef
7.
Zurück zum Zitat Ren, X., Liang, W., Xu, W. (2014). Maximizing charging throughput in rechargeable sensor networks. In International Conference on Computer Communication & Networks. Ren, X., Liang, W., Xu, W. (2014). Maximizing charging throughput in rechargeable sensor networks. In International Conference on Computer Communication & Networks.
8.
Zurück zum Zitat Weifa, Liang, Wenzheng, Xu., Xiaojiang, Ren, & Xiaohua, Jia. (2016). Maintaining large-scale rechargeable sensor networks perpetually via multiple mobile charging vehicles. ACM Transactions on Sensor Networks, 12(2), 1–26. Weifa, Liang, Wenzheng, Xu., Xiaojiang, Ren, & Xiaohua, Jia. (2016). Maintaining large-scale rechargeable sensor networks perpetually via multiple mobile charging vehicles. ACM Transactions on Sensor Networks, 12(2), 1–26.
9.
Zurück zum Zitat Mao, G., Lin, X., Liang, W., & Xu, W. (2016). Efficient scheduling of multiple mobile chargers for wireless sensor networks. IEEE Transactions on Vehicular Technology, 65(9), 7670–7683.CrossRef Mao, G., Lin, X., Liang, W., & Xu, W. (2016). Efficient scheduling of multiple mobile chargers for wireless sensor networks. IEEE Transactions on Vehicular Technology, 65(9), 7670–7683.CrossRef
10.
Zurück zum Zitat Lu, S., Jie, W., Sheng, Z. (2013). Collaborative mobile charging for sensor networks. In IEEE International Conference on Mobile Adhoc & Sensor Systems. Lu, S., Jie, W., Sheng, Z. (2013). Collaborative mobile charging for sensor networks. In IEEE International Conference on Mobile Adhoc & Sensor Systems.
11.
Zurück zum Zitat Fu, L., Cheng, P., Gu, Y., Chen, J., & He, T. (2016). Optimal charging in wireless rechargeable sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 278–291.CrossRef Fu, L., Cheng, P., Gu, Y., Chen, J., & He, T. (2016). Optimal charging in wireless rechargeable sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 278–291.CrossRef
12.
Zurück zum Zitat Somasundara, A. A., Kansal, A., Jea, D. D., Estrin, D., & Srivastava, M. B. (2006). Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8), 958–973.CrossRef Somasundara, A. A., Kansal, A., Jea, D. D., Estrin, D., & Srivastava, M. B. (2006). Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8), 958–973.CrossRef
13.
Zurück zum Zitat Wang, C., Li, J., Ye, F., & Yang, Y. (2014). NETWRAP: An NDN based real-time wireless recharging framework for wireless sensor networks. IEEE Transactions on Mobile Computing, 13(6), 1283–1297.CrossRef Wang, C., Li, J., Ye, F., & Yang, Y. (2014). NETWRAP: An NDN based real-time wireless recharging framework for wireless sensor networks. IEEE Transactions on Mobile Computing, 13(6), 1283–1297.CrossRef
14.
Zurück zum Zitat Yi, S., Xie, L., Hou, Y. T., Sherali, H. D. (2011) On renewable sensor networks with wireless energy transfer. In: 2011 Proceedings IEEE INFOCOM. Yi, S., Xie, L., Hou, Y. T., Sherali, H. D. (2011) On renewable sensor networks with wireless energy transfer. In: 2011 Proceedings IEEE INFOCOM.
15.
Zurück zum Zitat Chen, Z., & Shen, H. (2018). A grid-based reliable multi-hop routing protocol for energy-efficient wireless sensor networks. International Journal of Distributed Sensor Networks, 14(3), 1–17.CrossRef Chen, Z., & Shen, H. (2018). A grid-based reliable multi-hop routing protocol for energy-efficient wireless sensor networks. International Journal of Distributed Sensor Networks, 14(3), 1–17.CrossRef
16.
Zurück zum Zitat Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4), 395–410.CrossRef Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4), 395–410.CrossRef
17.
Zurück zum Zitat Chen, Z., Shen, H., & Wang, T. (2022). An adaptive on-demand charging scheme for rechargeable wireless sensor networks. Concurrency and Computation: Practice and Experience, 34(2), e6136.CrossRef Chen, Z., Shen, H., & Wang, T. (2022). An adaptive on-demand charging scheme for rechargeable wireless sensor networks. Concurrency and Computation: Practice and Experience, 34(2), e6136.CrossRef
18.
Zurück zum Zitat Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976.MathSciNetCrossRef Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976.MathSciNetCrossRef
Metadaten
Titel
Improve the quality of charging services for rechargeable wireless sensor networks by deploying a mobile vehicle with multiple removable chargers
verfasst von
ZhanSheng Chen
Hui Tian
Hong Shen
Publikationsdatum
29.05.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02965-3

Weitere Artikel der Ausgabe 7/2022

Wireless Networks 7/2022 Zur Ausgabe

Neuer Inhalt