Skip to main content
Erschienen in: Wireless Personal Communications 1/2022

08.02.2022

Improved RSS Based Distance Estimation for Autonomous Vehicles

verfasst von: Gokce Hacioglu, Erhan Sesli

Erschienen in: Wireless Personal Communications | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Autonomous vehicles are going to be used in warehouses or logistic centers more frequently in near future. The location information is vital for autonomous vehicles to accomplish tasks that are assigned to them. This study presents a wireless sensor network to be used in location estimation of autonomous vehicles. The autonomous vehicles estimate their distance to a specific node called as reference anchor node. The aim of the proposed method is to be able get more accurate distance estimations by received signal strength for autonomous vehicles. The proposed wireless sensor network provides sufficient information to the autonomous vehicles to reduce their received signal strength based estimation error. An adaptive filter based algorithm to reduce estimation error is proposed. The performance of the proposed method is validated by simulations and experiments. According to results of the simulations where ideal conditions are provided, maximum error of the proposed method is 0.81m. According to results of the experiments, the average absolute error of the proposed method can be as low as 1.272m. When the proposed method is compared with k-nearest neighbor distance estimation and conventional approach, it has a significantly lower error than them.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Durrant-Whyte, H., Pagac, D., Rogers, B., et al. (2007). An autonomous straddle carrier for movement of shipping containers. IEEE Robotics and Automation Magazine, 14(3), 14–24.CrossRef Durrant-Whyte, H., Pagac, D., Rogers, B., et al. (2007). An autonomous straddle carrier for movement of shipping containers. IEEE Robotics and Automation Magazine, 14(3), 14–24.CrossRef
2.
Zurück zum Zitat Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231–249.CrossRef Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231–249.CrossRef
3.
Zurück zum Zitat Milanés, V., Naranjo, J. E., González, C., Alonso, J., & de Pedro, T. (2008). Autonomous vehicle based in cooperative GPS and inertial systems. Robotica, 26(5), 627–633.CrossRef Milanés, V., Naranjo, J. E., González, C., Alonso, J., & de Pedro, T. (2008). Autonomous vehicle based in cooperative GPS and inertial systems. Robotica, 26(5), 627–633.CrossRef
4.
Zurück zum Zitat Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.CrossRef Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.CrossRef
5.
Zurück zum Zitat Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22(4), 269–280.CrossRef Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22(4), 269–280.CrossRef
6.
Zurück zum Zitat Gao, Y., Liu, S., Atia, M., & Noureldin, A. (2015). INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 15(9), 23286–23302.CrossRef Gao, Y., Liu, S., Atia, M., & Noureldin, A. (2015). INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 15(9), 23286–23302.CrossRef
7.
Zurück zum Zitat Aldibaja, M., Suganuma, N., & Yoneda, K. (2017). Robust intensity-based localization method for autonomous driving on snow-wet road surface. IEEE Transactions on Industrial Informatics, 13(5), 2369–2378.CrossRef Aldibaja, M., Suganuma, N., & Yoneda, K. (2017). Robust intensity-based localization method for autonomous driving on snow-wet road surface. IEEE Transactions on Industrial Informatics, 13(5), 2369–2378.CrossRef
8.
Zurück zum Zitat Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors, 17(9), 2140.CrossRef Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors, 17(9), 2140.CrossRef
9.
Zurück zum Zitat Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.CrossRef Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.CrossRef
10.
Zurück zum Zitat Hata, A. Y., & Wolf, D. F. (2015). Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Transactions on Intelligent Transportation Systems, 17(2), 420–429.CrossRef Hata, A. Y., & Wolf, D. F. (2015). Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Transactions on Intelligent Transportation Systems, 17(2), 420–429.CrossRef
11.
Zurück zum Zitat Maneerat, K., & Kaemarungsi, K. (2019). RoC: Robust and low-complexity wireless indoor positioning systems for multifloor buildings using location fingerprinting techniques. Mobile Information Systems, 2019, 5089626. https://doi.org/10.1155/2019/5089626. Maneerat, K., & Kaemarungsi, K. (2019). RoC: Robust and low-complexity wireless indoor positioning systems for multifloor buildings using location fingerprinting techniques. Mobile Information Systems, 2019, 5089626. https://​doi.​org/​10.​1155/​2019/​5089626.
12.
Zurück zum Zitat Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.CrossRef Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.CrossRef
13.
Zurück zum Zitat Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.CrossRef Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.CrossRef
14.
Zurück zum Zitat Phoemphon, S., So-In, C., & Niyato, D. T. (2018). A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Applied Soft Computing, 65, 101–120.CrossRef Phoemphon, S., So-In, C., & Niyato, D. T. (2018). A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Applied Soft Computing, 65, 101–120.CrossRef
15.
Zurück zum Zitat Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight. Sensors, 19(14), 3242.CrossRef Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight. Sensors, 19(14), 3242.CrossRef
16.
Zurück zum Zitat Phoemphon, S., So-In, C., & Leelathakul, N. (2020). A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Systems with Applications, 143, 113044.CrossRef Phoemphon, S., So-In, C., & Leelathakul, N. (2020). A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Systems with Applications, 143, 113044.CrossRef
17.
Zurück zum Zitat Bekcibasi, U., & Tenruh, M. (2014). Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytechnica Hungarica, 11(8), 103–120. Bekcibasi, U., & Tenruh, M. (2014). Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytechnica Hungarica, 11(8), 103–120.
18.
Zurück zum Zitat Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing. Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing.
19.
Zurück zum Zitat Goldoni, E., Savioli, A., Risi, M., & Gamba, P. (2010). Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In European Wireless Conference (EW). Goldoni, E., Savioli, A., Risi, M., & Gamba, P. (2010). Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In European Wireless Conference (EW).
20.
Zurück zum Zitat Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks. In IEEE Fifth international conference on wireless communication and sensor networks (WCSN). Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks. In IEEE Fifth international conference on wireless communication and sensor networks (WCSN).
21.
Zurück zum Zitat Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In IEEE international conference on Industrial technology (ICIT). Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In IEEE international conference on Industrial technology (ICIT).
22.
Zurück zum Zitat Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.CrossRef Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.CrossRef
23.
Zurück zum Zitat Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef
24.
Zurück zum Zitat Bachrach, J. & Taylor, C. (2005). Handbook of sensor networks: Algorithms and architectures. In I. Stojmenovic (Ed.), New Jersey: Wiley. (Chapter 9). Bachrach, J. & Taylor, C. (2005). Handbook of sensor networks: Algorithms and architectures. In I. Stojmenovic (Ed.), New Jersey: Wiley. (Chapter 9).
25.
Zurück zum Zitat Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In 15th International Conference on Systems, Signals and Image Processing. Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In 15th International Conference on Systems, Signals and Image Processing.
26.
Zurück zum Zitat URL1, Texas Intruments, Texas, US. CC2538 (datasheet). 33 pages. [Online] Cited 2018-01-20. Available at: http://www.ti.com/lit/ds/symlink/cc2538.pdf URL1, Texas Intruments, Texas, US. CC2538 (datasheet). 33 pages. [Online] Cited 2018-01-20. Available at: http://​www.​ti.​com/​lit/​ds/​symlink/​cc2538.​pdf
27.
Zurück zum Zitat Willis, S. L., & Kikkert, C. J. (2005). Radio propagation model for long-range ad hoc wireless sensor network. In International conference on wireless networks, communications and mobile computing. Willis, S. L., & Kikkert, C. J. (2005). Radio propagation model for long-range ad hoc wireless sensor network. In International conference on wireless networks, communications and mobile computing.
28.
Zurück zum Zitat Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.CrossRef Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.CrossRef
29.
Zurück zum Zitat Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., ... & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802, 15(4), 662. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., ... & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802, 15(4), 662.
30.
Zurück zum Zitat Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef
31.
Zurück zum Zitat Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef
32.
Zurück zum Zitat Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.CrossRef Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.CrossRef
33.
Zurück zum Zitat Sari, R., & Zayyani, H. (2018). RSS localization using unknown statistical path loss exponent model. IEEE Communications Letters, 22(9), 1830–1833.CrossRef Sari, R., & Zayyani, H. (2018). RSS localization using unknown statistical path loss exponent model. IEEE Communications Letters, 22(9), 1830–1833.CrossRef
34.
Zurück zum Zitat Cama-Pinto, A., Pineres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7), 1550147717722691.CrossRef Cama-Pinto, A., Pineres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7), 1550147717722691.CrossRef
35.
Zurück zum Zitat Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2010). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.CrossRef Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2010). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.CrossRef
36.
Zurück zum Zitat Akhtar, N., Ergen, S. C., & Ozkasap, O. (2014). Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation. IEEE Transactions on Vehicular Technology, 64(1), 248–262.CrossRef Akhtar, N., Ergen, S. C., & Ozkasap, O. (2014). Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation. IEEE Transactions on Vehicular Technology, 64(1), 248–262.CrossRef
37.
Zurück zum Zitat Dang, X., Hei, Y., & Hao, Z. (2016). An improved indoor localization based on RSSI and feedback correction of anchor node for WSN. In International conference on computer, information and telecommunication systems (CITS). Dang, X., Hei, Y., & Hao, Z. (2016). An improved indoor localization based on RSSI and feedback correction of anchor node for WSN. In International conference on computer, information and telecommunication systems (CITS).
38.
Zurück zum Zitat Singh, A. P., Singh, D. P., & Kumar, S. (2015). NRSSI: new proposed RSSI method for the distance measurement in WSNs. In 1st International conference on next generation computing technologies (NGCT). Singh, A. P., Singh, D. P., & Kumar, S. (2015). NRSSI: new proposed RSSI method for the distance measurement in WSNs. In 1st International conference on next generation computing technologies (NGCT).
39.
Zurück zum Zitat Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6. Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6.
40.
Zurück zum Zitat Xiao, Z., Wen, H., Markham, A., Trigoni, N., Blunsom, P., & Frolik, J. (2015). Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications, 14(3), 1689–1702.CrossRef Xiao, Z., Wen, H., Markham, A., Trigoni, N., Blunsom, P., & Frolik, J. (2015). Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications, 14(3), 1689–1702.CrossRef
41.
Zurück zum Zitat He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490.CrossRef He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490.CrossRef
42.
Zurück zum Zitat Li, D., Zhang, B., & Li, C. (2016). A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet of Things Journal, 3(4), 590–597.CrossRef Li, D., Zhang, B., & Li, C. (2016). A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet of Things Journal, 3(4), 590–597.CrossRef
43.
Zurück zum Zitat Luo, R. C., & Hsiao, T. J. (2019). Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Transactions on Industrial Electronics, 66(3), 1940–1951.CrossRef Luo, R. C., & Hsiao, T. J. (2019). Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Transactions on Industrial Electronics, 66(3), 1940–1951.CrossRef
44.
Zurück zum Zitat Closas, P., Fernandez-Prades, C., & Fernandez-Rubio, J. A. (2009). Cramér-Rao bound analysis of positioning approaches in GNSS receivers. IEEE Transactions on Signal Processing, 57(10), 3775–3786.MathSciNetCrossRef Closas, P., Fernandez-Prades, C., & Fernandez-Rubio, J. A. (2009). Cramér-Rao bound analysis of positioning approaches in GNSS receivers. IEEE Transactions on Signal Processing, 57(10), 3775–3786.MathSciNetCrossRef
45.
Zurück zum Zitat Zhao, Y., Yang, Y., & Kyas, M. (2014). Cramér-rao lower bound analysis for wireless localization systems using priori information. In 11th Workshop on positioning, navigation and communication (WPNC). Zhao, Y., Yang, Y., & Kyas, M. (2014). Cramér-rao lower bound analysis for wireless localization systems using priori information. In 11th Workshop on positioning, navigation and communication (WPNC).
46.
Zurück zum Zitat Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernandez, P., Lago, F. A., Garcia, E., & Abril, E. J. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.CrossRef Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernandez, P., Lago, F. A., Garcia, E., & Abril, E. J. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.CrossRef
47.
Zurück zum Zitat Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Burlington, MA (USA): Academic Press.CrossRef Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Burlington, MA (USA): Academic Press.CrossRef
48.
Zurück zum Zitat URL2, Texas Instruments, Texas, US. CC2538-CC2592 Evaluation Module Kit Quick Start Guide (datasheet). 3 pages. [Online] Cited 2018-03-28. Available at: http://www.ti.com/lit/ml/swru363/swru363.pdf URL2, Texas Instruments, Texas, US. CC2538-CC2592 Evaluation Module Kit Quick Start Guide (datasheet). 3 pages. [Online] Cited 2018-03-28. Available at: http://​www.​ti.​com/​lit/​ml/​swru363/​swru363.​pdf
49.
Zurück zum Zitat Suman, K. D., & Pasan, M. K. (2016). Design and methodology of automated guided vehicle-a review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 29–36. Suman, K. D., & Pasan, M. K. (2016). Design and methodology of automated guided vehicle-a review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 29–36.
50.
Zurück zum Zitat Nelson, W. L., & Cox, I. J. (1990). Local path control for an autonomous vehicle. In CoxGordon I. In & J. & Wilfong G.T. (Eds.), Autonomous robot vehicles. New York: Springer. Nelson, W. L., & Cox, I. J. (1990). Local path control for an autonomous vehicle. In CoxGordon I. In & J. & Wilfong G.T. (Eds.), Autonomous robot vehicles. New York: Springer.
51.
Zurück zum Zitat Ye, C., Jiang, X., Yu, S., & Jiang, C. (2016). A tracking method of an assembling Omni-directional mobile robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO). Ye, C., Jiang, X., Yu, S., & Jiang, C. (2016). A tracking method of an assembling Omni-directional mobile robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO).
Metadaten
Titel
Improved RSS Based Distance Estimation for Autonomous Vehicles
verfasst von
Gokce Hacioglu
Erhan Sesli
Publikationsdatum
08.02.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09552-x

Weitere Artikel der Ausgabe 1/2022

Wireless Personal Communications 1/2022 Zur Ausgabe

Neuer Inhalt