Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2015

01.02.2015

Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite

verfasst von: Jin Lin, Haiyan Zhang, Muyao Tang, Wenying Tu, Xiubin Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We produced graphite nanoplatelets (GNP)/silicone resin composites at various loadings. The utilized GNPs were characterized by two-dimensional structure with high aspect ratio (~1810), and the GNP with approximately 10-30 nm thickness and 10-50 µm in length evenly dispersed throughout the resin matrix, which enables that GNPs effectively act as thermally conductive medium, thus contributed considerably to the formation of an efficient three-dimensional network for heat flow. The thermal conductivities of 5, 10, 15, and 20 wt.% GNP composite were 0.35, 1.02, 1.32, and 2.01 W/(m K), and were ca. 0.9, 4.7, 6.3, and 10.2 times higher than that of silicone resin at room temperature, respectively. The thermal conductivity decreased with elevated temperature in 25-200 °C, which was reminiscent at higher loading. Differential scanning calorimeter analysis showed that GNP addition increased the curing temperature of silicone resin from 90 to 119 °C, probably by hindering the free movement (mobility) of the silicone chains. The result showed that the GNP not only reduced the CTE but also improved the thermal stability of composite simultaneously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Raza, A.V.K. Westwood, and C. Stirling, Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, International Symposium on Advanced Packaging Materials: Microtech, APM ‘10, 2010, p 34–48 M.A. Raza, A.V.K. Westwood, and C. Stirling, Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, International Symposium on Advanced Packaging Materials: Microtech, APM ‘10, 2010, p 34–48
2.
Zurück zum Zitat J. Li, L. Vaisman, G. Marom, and J.K. Kim, Br Treated Graphite Nanoplatelets for Improved Electrical Conductivity of Polymer Composites, Carbon, 2007, 45(4), p 744–750CrossRef J. Li, L. Vaisman, G. Marom, and J.K. Kim, Br Treated Graphite Nanoplatelets for Improved Electrical Conductivity of Polymer Composites, Carbon, 2007, 45(4), p 744–750CrossRef
3.
Zurück zum Zitat D.L. Nika and A.A. Balandin, Two-Dimensional Phonon Transport in Graphene, J. Phys., 2012, 24, p 233203 D.L. Nika and A.A. Balandin, Two-Dimensional Phonon Transport in Graphene, J. Phys., 2012, 24, p 233203
4.
Zurück zum Zitat Y.C. Li, S.C. Tjong, and R.K.Y. Li, Electrical Conductivity and Dielectric Response of Poly (Vinylidene Fluoride)-Graphite Nanoplatelet Composites, Synth. Met., 2010, 160, p 1912–1919CrossRef Y.C. Li, S.C. Tjong, and R.K.Y. Li, Electrical Conductivity and Dielectric Response of Poly (Vinylidene Fluoride)-Graphite Nanoplatelet Composites, Synth. Met., 2010, 160, p 1912–1919CrossRef
5.
Zurück zum Zitat B. Li and W.H. Zhong, Review on Polymer/Graphite Nanoplatelet Nanocomposites, J. Mater. Sci., 2011, 46, p 5595–5614CrossRef B. Li and W.H. Zhong, Review on Polymer/Graphite Nanoplatelet Nanocomposites, J. Mater. Sci., 2011, 46, p 5595–5614CrossRef
6.
Zurück zum Zitat N.K. Mahanta and A.R. Abramson, Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets, 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012, p 1–6 N.K. Mahanta and A.R. Abramson, Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets, 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012, p 1–6
7.
Zurück zum Zitat M.A. Raza, A. Westwood, and C. Stirling, Carbon Black/Graphite Nanoplatelet/Rubbery Epoxy Hybrid Composites for Thermal Interface Applications, J. Mater. Sci., 2012, 47, p 1059–1070CrossRef M.A. Raza, A. Westwood, and C. Stirling, Carbon Black/Graphite Nanoplatelet/Rubbery Epoxy Hybrid Composites for Thermal Interface Applications, J. Mater. Sci., 2012, 47, p 1059–1070CrossRef
8.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8(3), p 902–907CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8(3), p 902–907CrossRef
9.
Zurück zum Zitat D.D.L. Chung, Review Graphite, J. Mater. Sci., 2002, 37(8), p 1475–1489CrossRef D.D.L. Chung, Review Graphite, J. Mater. Sci., 2002, 37(8), p 1475–1489CrossRef
10.
Zurück zum Zitat S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokalitov, C.N. Lau, and A.A. Balandin, Dimensional Crossover of Thermal Transport in Few-Layer Graphene, Nat. Mater., 2010, 9(7), p 555–558CrossRef S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokalitov, C.N. Lau, and A.A. Balandin, Dimensional Crossover of Thermal Transport in Few-Layer Graphene, Nat. Mater., 2010, 9(7), p 555–558CrossRef
11.
Zurück zum Zitat K.M.F. Shahil and A.A. Balandin, Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Lett., 2012, 12, p 861–867CrossRef K.M.F. Shahil and A.A. Balandin, Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Lett., 2012, 12, p 861–867CrossRef
12.
Zurück zum Zitat A. Yasmin and I.M. Daniel, Mechanical and Thermal Properties of Graphite Platelet/Epoxy Composites, Polymer, 2004, 45, p 8211–8219CrossRef A. Yasmin and I.M. Daniel, Mechanical and Thermal Properties of Graphite Platelet/Epoxy Composites, Polymer, 2004, 45, p 8211–8219CrossRef
13.
Zurück zum Zitat K. Kalaitzidou, H. Fukushima, and L.T. Drzal, Multifunctional Polypropylene Composites Produced by Incorporation of Exfoliated Graphite Nanoplatelets, Carbon, 2007, 45, p 1446–1452CrossRef K. Kalaitzidou, H. Fukushima, and L.T. Drzal, Multifunctional Polypropylene Composites Produced by Incorporation of Exfoliated Graphite Nanoplatelets, Carbon, 2007, 45, p 1446–1452CrossRef
14.
Zurück zum Zitat W. Lin, R. Zhang, and C.P. Wong, Modeling of Thermal Conductivity of Graphite Nanosheet Composites, J. Electron. Mater., 2010, 39(3), p 268–272CrossRef W. Lin, R. Zhang, and C.P. Wong, Modeling of Thermal Conductivity of Graphite Nanosheet Composites, J. Electron. Mater., 2010, 39(3), p 268–272CrossRef
15.
Zurück zum Zitat A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials, J. Phys. Chem. C, 2007, 111(21), p 7565–7569CrossRef A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials, J. Phys. Chem. C, 2007, 111(21), p 7565–7569CrossRef
16.
Zurück zum Zitat M.A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, Characterisation of Graphite Nanoplatelets and the Physical Properties of Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, Carbon, 2011, 49(13), p 4269–4279CrossRef M.A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, Characterisation of Graphite Nanoplatelets and the Physical Properties of Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, Carbon, 2011, 49(13), p 4269–4279CrossRef
17.
Zurück zum Zitat A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites, Adv. Mater., 2008, 20(24), p 4740–4744CrossRef A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites, Adv. Mater., 2008, 20(24), p 4740–4744CrossRef
18.
Zurück zum Zitat T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, and X. Wang, Improving the Thermal Conductivity of Epoxy Resin by the Addition of a Mixture of Graphite Nanoplatelets and Silicon Carbide Microparticles, Express Polym. Lett., 2013, 7(7), p 585–594CrossRef T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, and X. Wang, Improving the Thermal Conductivity of Epoxy Resin by the Addition of a Mixture of Graphite Nanoplatelets and Silicon Carbide Microparticles, Express Polym. Lett., 2013, 7(7), p 585–594CrossRef
19.
Zurück zum Zitat S. Ganguli, A. Roy, and D.P. Anderson, Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites, Carbon, 2008, 46(5), p 806–817CrossRef S. Ganguli, A. Roy, and D.P. Anderson, Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites, Carbon, 2008, 46(5), p 806–817CrossRef
20.
Zurück zum Zitat A.A. Moussa and K. Mullen, Using Normal Modes to Calculate and Optimize Thermal Conductivity in Functionalized Macromolecules, Phys. Rev. E, 2011, 83(5), p 056708CrossRef A.A. Moussa and K. Mullen, Using Normal Modes to Calculate and Optimize Thermal Conductivity in Functionalized Macromolecules, Phys. Rev. E, 2011, 83(5), p 056708CrossRef
21.
Zurück zum Zitat M.A. Raza, A.V.K. Westwood, A.P. Brown, and C. Stirling, Texture, Transport and Mechanical Properties of Graphite Nanoplatelet/Silicone Composites Produced by Three Roll Mill, Compos. Sci. Technol., 2012, 72, p 467–475CrossRef M.A. Raza, A.V.K. Westwood, A.P. Brown, and C. Stirling, Texture, Transport and Mechanical Properties of Graphite Nanoplatelet/Silicone Composites Produced by Three Roll Mill, Compos. Sci. Technol., 2012, 72, p 467–475CrossRef
22.
Zurück zum Zitat A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581CrossRef A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581CrossRef
23.
Zurück zum Zitat G.D. Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, and M.S. Sarto, Electromagnetic Properties of Composites Containing Graphite Nanoplatelets at Radio Frequency, Carbon, 2011, 49, p 4291–4300CrossRef G.D. Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, and M.S. Sarto, Electromagnetic Properties of Composites Containing Graphite Nanoplatelets at Radio Frequency, Carbon, 2011, 49, p 4291–4300CrossRef
24.
Zurück zum Zitat K. Efimenko, W.E. Wallace, and J. Genzer, Surface Modification of Sylgard-184 Poly(Dimethyl Siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment, J. Colloid Interf. Sci., 2002, 254, p 306–315CrossRef K. Efimenko, W.E. Wallace, and J. Genzer, Surface Modification of Sylgard-184 Poly(Dimethyl Siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment, J. Colloid Interf. Sci., 2002, 254, p 306–315CrossRef
25.
Zurück zum Zitat F. He, J. Fan, and S. Lau, Thermal, Mechanical, and Dielectric Properties of Graphite Reinforced Poly (Vinylidene Fluoride) Composites, Polym. Test., 2008, 27, p 964–970CrossRef F. He, J. Fan, and S. Lau, Thermal, Mechanical, and Dielectric Properties of Graphite Reinforced Poly (Vinylidene Fluoride) Composites, Polym. Test., 2008, 27, p 964–970CrossRef
26.
Zurück zum Zitat A. Milev, M. Wilson, G.S.K. Kannangara, and N. Tran, X-ray Diffraction Line Profile Analysis of Nanocrystalline Graphite, Mater. Chem. Phys., 2008, 111, p 346–350CrossRef A. Milev, M. Wilson, G.S.K. Kannangara, and N. Tran, X-ray Diffraction Line Profile Analysis of Nanocrystalline Graphite, Mater. Chem. Phys., 2008, 111, p 346–350CrossRef
27.
Zurück zum Zitat F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 1970, 53, p 1126–1130CrossRef F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 1970, 53, p 1126–1130CrossRef
28.
Zurück zum Zitat R.P. Vidano, D.B. Fischbach, L.J. Willis, and T.M. Loehr, Observation of Raman Band Shifting with Excitation Wavelength for Carbons and Graphites, Solid State Commun., 1981, 39(2), p 341–344CrossRef R.P. Vidano, D.B. Fischbach, L.J. Willis, and T.M. Loehr, Observation of Raman Band Shifting with Excitation Wavelength for Carbons and Graphites, Solid State Commun., 1981, 39(2), p 341–344CrossRef
29.
Zurück zum Zitat X. Wang and W. Dou, Preparation of Graphite Oxide (GO) and the Thermal Stability of Silicone Rubber/GO Nanocomposites, Thermochim. Acta, 2012, 529, p 25–28CrossRef X. Wang and W. Dou, Preparation of Graphite Oxide (GO) and the Thermal Stability of Silicone Rubber/GO Nanocomposites, Thermochim. Acta, 2012, 529, p 25–28CrossRef
30.
Zurück zum Zitat C. Min, D. Yu, J. Cao, G. Wang, and L. Feng, A Graphite Nanoplatelet/Epoxy Composite with High Dielectric Constant and High Thermal Conductivity, Carbon, 2013, 55, p 116–125CrossRef C. Min, D. Yu, J. Cao, G. Wang, and L. Feng, A Graphite Nanoplatelet/Epoxy Composite with High Dielectric Constant and High Thermal Conductivity, Carbon, 2013, 55, p 116–125CrossRef
31.
Zurück zum Zitat V. Goyal and A.A. Balandin, Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials, Appl. Phys. Lett., 2012, 100, p 073113CrossRef V. Goyal and A.A. Balandin, Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials, Appl. Phys. Lett., 2012, 100, p 073113CrossRef
32.
Zurück zum Zitat S. Yu, P. Hing, and X. Hu, Thermal Conductivity of Polystyrene-Aluminum Nitride Composite, Compos. Part A, 2002, 33(2), p 289–292CrossRef S. Yu, P. Hing, and X. Hu, Thermal Conductivity of Polystyrene-Aluminum Nitride Composite, Compos. Part A, 2002, 33(2), p 289–292CrossRef
33.
Zurück zum Zitat P. LeBaron, Z. Wang, and T.J. Pinnavaia, Polymer-Layered Silicate Nanocomposites: An Overview, Appl. Clay Sci., 1999, 15(1–2), p 11–29CrossRef P. LeBaron, Z. Wang, and T.J. Pinnavaia, Polymer-Layered Silicate Nanocomposites: An Overview, Appl. Clay Sci., 1999, 15(1–2), p 11–29CrossRef
34.
Zurück zum Zitat K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and Properties of Polyimide-Clay Hybrid, J. Polym. Sci. Polym. Chem., 2003, 31(10), p 2493–2498CrossRef K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and Properties of Polyimide-Clay Hybrid, J. Polym. Sci. Polym. Chem., 2003, 31(10), p 2493–2498CrossRef
35.
Zurück zum Zitat Q. Mu and S. Feng, Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation, Thermochim. Acta, 2007, 462(1–2), p 70–75CrossRef Q. Mu and S. Feng, Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation, Thermochim. Acta, 2007, 462(1–2), p 70–75CrossRef
36.
Zurück zum Zitat B. Debelak and K. Lafdi, Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties, Carbon, 2007, 45(9), p 1727–1734CrossRef B. Debelak and K. Lafdi, Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties, Carbon, 2007, 45(9), p 1727–1734CrossRef
37.
Zurück zum Zitat E.T. Swartz and R.O. Pohl, Thermal Boundary Resistance, Rev. Mod. Phys., 1989, 61, p 605–668CrossRef E.T. Swartz and R.O. Pohl, Thermal Boundary Resistance, Rev. Mod. Phys., 1989, 61, p 605–668CrossRef
38.
Zurück zum Zitat J. Xu, K.M. Razeeb, and S. Roy, Thermal Properties of Single Walled Carbon Nanotube-Silicone Nanocomposites, J. Polym. Sci. Polym. Phys., 2008, 46(17), p 1845–1852CrossRef J. Xu, K.M. Razeeb, and S. Roy, Thermal Properties of Single Walled Carbon Nanotube-Silicone Nanocomposites, J. Polym. Sci. Polym. Phys., 2008, 46(17), p 1845–1852CrossRef
39.
Zurück zum Zitat P.J. Yoon, T.D. Fornes, and D.R. Paul, Thermal Expansion Behavior of Nylon 6 Nanocomposites, Polymer, 2002, 43(25), p 6727–6741CrossRef P.J. Yoon, T.D. Fornes, and D.R. Paul, Thermal Expansion Behavior of Nylon 6 Nanocomposites, Polymer, 2002, 43(25), p 6727–6741CrossRef
Metadaten
Titel
Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite
verfasst von
Jin Lin
Haiyan Zhang
Muyao Tang
Wenying Tu
Xiubin Zhang
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1356-2

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Engineering and Performance 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.