Skip to main content
Erschienen in: Cellulose 7/2018

28.05.2018 | Original Paper

Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters

verfasst von: Yuichi Tominaga, Kimiyasu Sato, Yuji Hotta, Hitoshi Shibuya, Mai Sugie, Toshio Saruyama

Erschienen in: Cellulose | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The in-plane thermal conductivity of cellulose nanofiber (CNF) composite film densely covered with nanodiamond (ND) particles has been improved by using the wet-rotating disc milling (WRDM) process and optimizing the compositional ratio of ND and CNF. The aspect ratio of CNF fibrils was increased by 42% using the WRDM. Furthermore, the in-plane thermal conductivities of CNF and ND/CNF films composed of WRDM-assisted CNF fibrils were improved with the increase of the aspect ratio of CNF fibrils. In addition, the mass ratio of ND to CNF and the in-plane thermal conductivity of the ND/CNF composite film were enhanced by using the WRDM-assisted ND suspensions owing to the improvement of dispersibility of ND particles. Consequently, the in-plane thermal conductivity of the ND/CNF film increased by 82% from 2.67 to 4.85 W/m K with the increase of the aspect ratio of CNF fibrils, thus improving the dispersibility of ND particles and optimizing the compositional ratio of ND and CNF. The dense adsorption of ND particles on the surface of CNF fibrils with high aspect ratio led to the improvement of the in-plane thermal conductivity of the composite film.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634CrossRef Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634CrossRef
Zurück zum Zitat Berman R, Klemens PG (1978) Thermal conduction in solids. Phys Today 31:56CrossRef Berman R, Klemens PG (1978) Thermal conduction in solids. Phys Today 31:56CrossRef
Zurück zum Zitat Cai N, Hou D, Luo X, Han C, Fu J, Zeng H, Yu F (2016a) Enhancing mechanical properties of polyelectrolyte complex nanofibers with graphene oxide nanofillers pretreated by polycation. Compos Sci Technol 135:128–136CrossRef Cai N, Hou D, Luo X, Han C, Fu J, Zeng H, Yu F (2016a) Enhancing mechanical properties of polyelectrolyte complex nanofibers with graphene oxide nanofillers pretreated by polycation. Compos Sci Technol 135:128–136CrossRef
Zurück zum Zitat Cai N, Li C, Luo X, Xue Y, Shen L, Yu F (2016b) A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol. J Mater Sci 51:797–808CrossRef Cai N, Li C, Luo X, Xue Y, Shen L, Yu F (2016b) A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol. J Mater Sci 51:797–808CrossRef
Zurück zum Zitat Chen W et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161CrossRefPubMed Chen W et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161CrossRefPubMed
Zurück zum Zitat Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259CrossRef Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259CrossRef
Zurück zum Zitat Jakob H, Fengel D, Tschegg S, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787CrossRef Jakob H, Fengel D, Tschegg S, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787CrossRef
Zurück zum Zitat Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565CrossRef Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565CrossRef
Zurück zum Zitat Lee G-W, Lee JI, Lee S-S, Park M, Kim J (2005) Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites. J Mater Sci 40:1259–1263CrossRef Lee G-W, Lee JI, Lee S-S, Park M, Kim J (2005) Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites. J Mater Sci 40:1259–1263CrossRef
Zurück zum Zitat Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91:1169–1174CrossRef Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91:1169–1174CrossRef
Zurück zum Zitat Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Proceedings of the transactions of 12th fundamental research symposium, Oxford, pp 225–254 Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Proceedings of the transactions of 12th fundamental research symposium, Oxford, pp 225–254
Zurück zum Zitat Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11CrossRef Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11CrossRef
Zurück zum Zitat Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71:710–716CrossRef Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71:710–716CrossRef
Zurück zum Zitat Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647–1651CrossRef Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647–1651CrossRef
Zurück zum Zitat Sato K, Ijuin A, Hotta Y (2015) Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram Int 41:10314–10318CrossRef Sato K, Ijuin A, Hotta Y (2015) Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram Int 41:10314–10318CrossRef
Zurück zum Zitat Sato K, Tominaga Y, Hotta Y, Shibuya H, Sugie M, Saruyama T (2018) Cellulose nanofiber/nanodiamond composite films: thermal conductivity enhancement achieved by a tuned nanostructure. Adv Powder Technol 29(4):972–976CrossRef Sato K, Tominaga Y, Hotta Y, Shibuya H, Sugie M, Saruyama T (2018) Cellulose nanofiber/nanodiamond composite films: thermal conductivity enhancement achieved by a tuned nanostructure. Adv Powder Technol 29(4):972–976CrossRef
Zurück zum Zitat Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978CrossRefPubMed Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978CrossRefPubMed
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromolecules 16:2220–2227CrossRefPubMed Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromolecules 16:2220–2227CrossRefPubMed
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
Zurück zum Zitat Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRef Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRef
Zurück zum Zitat Zhang Y, Choi JR, Park S-J (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos Part A Appl S 101:227–236CrossRef Zhang Y, Choi JR, Park S-J (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos Part A Appl S 101:227–236CrossRef
Zurück zum Zitat Zhang Y, Rhee KY, Hui D, Park S-J (2018) A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos Part B Eng 143:19–27CrossRef Zhang Y, Rhee KY, Hui D, Park S-J (2018) A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos Part B Eng 143:19–27CrossRef
Metadaten
Titel
Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters
verfasst von
Yuichi Tominaga
Kimiyasu Sato
Yuji Hotta
Hitoshi Shibuya
Mai Sugie
Toshio Saruyama
Publikationsdatum
28.05.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 7/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1869-1

Weitere Artikel der Ausgabe 7/2018

Cellulose 7/2018 Zur Ausgabe