Skip to main content
Erschienen in: International Journal of Steel Structures 5/2022

20.09.2022

Improving Progressive Collapse Performance of Steel Moment-Resisting Frames Through X-Bracing Slack Cables

verfasst von: Maryam Musavi-Z, Mohammad Reza Sheidaii

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The intended purpose of this study is the steel moment-resisting frames strengthening through cable elements to improve the progressive collapse and seismic performance of the structure simultaneously. To achieve this goal, X-bracing slack cables were applied to all surrounding bays of the top story of the model with variable parameters, including different cable sizes and distinct amounts of slackness, to reach the most appropriate cable characteristics for one column removal or even two columns loss scenario. Increasing the number of paths to redistribute the loads developed due to initial local damage leads to improvement of the progressive collapse response in the existing or new structures. The progressive collapse and seismic performance of the non-strengthened and strengthened model structures were assessed using the nonlinear dynamic alternate path method recommended in the Unified Facilities Criteria guidelines and the pushover analysis of ASCE 41, respectively. Finally, two diagrams were extracted to find a relation between the size and slackness of the cables with the performance level of the structure. Obtained diagrams show that the proposed strengthening scheme can improve the progressive collapse resistance of the steel moment-resisting frames to the desired performance level corresponding to the selected slackness and minimum breaking load of cable. Pushover analysis results showed that the introduced strengthening scheme led to a more appropriate or at least unchanged seismic response. It should be considered in the design phase of columns and cables that adding cables leads to compression enhancement of columns after activation of cable elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122–149.CrossRef Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122–149.CrossRef
Zurück zum Zitat American Institute of Steel Construction (AISC 341). (2016). Seismic provisions for structural steel buildings. Chicago. American Institute of Steel Construction (AISC 341). (2016). Seismic provisions for structural steel buildings. Chicago.
Zurück zum Zitat American Institute of Steel Construction (AISC 360). (2016). Specifications for structural steel buildings. Chicago. American Institute of Steel Construction (AISC 360). (2016). Specifications for structural steel buildings. Chicago.
Zurück zum Zitat American Society of Civil Engineers (ASCE 7). (2005). Minimum design loads for buildings and other structures. New York. American Society of Civil Engineers (ASCE 7). (2005). Minimum design loads for buildings and other structures. New York.
Zurück zum Zitat American Society of Civil Engineers (ASCE 7). (2016). Minimum design loads for buildings and other structures. New York. American Society of Civil Engineers (ASCE 7). (2016). Minimum design loads for buildings and other structures. New York.
Zurück zum Zitat American Society of Civil Engineers (ASCE 19). (2016). Structural applications of steel cables for buildings. United States. American Society of Civil Engineers (ASCE 19). (2016). Structural applications of steel cables for buildings. United States.
Zurück zum Zitat American Society of Civil Engineers (ASCE 41). (2017). Seismic rehabilitation of existing buildings. New York. American Society of Civil Engineers (ASCE 41). (2017). Seismic rehabilitation of existing buildings. New York.
Zurück zum Zitat Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.CrossRef Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.CrossRef
Zurück zum Zitat Chen, J., Peng, W., Ma, R., & He, M. (2012). Strengthening of horizontal bracing on progressive collapse resistance of multistory steel moment frame. Journal of Performance of Constructed Facilities, 26(5), 720–724.CrossRef Chen, J., Peng, W., Ma, R., & He, M. (2012). Strengthening of horizontal bracing on progressive collapse resistance of multistory steel moment frame. Journal of Performance of Constructed Facilities, 26(5), 720–724.CrossRef
Zurück zum Zitat CSI Analysis Reference Manual. (2016). CSI Analysis reference manual for SAP2000, ETABS, SAFE and CSi Bridge. Berkeley, California, USA. CSI Analysis Reference Manual. (2016). CSI Analysis reference manual for SAP2000, ETABS, SAFE and CSi Bridge. Berkeley, California, USA.
Zurück zum Zitat Elkholy, S., Tagel-Din, H., & Meguro, K. (2003). Structural failure simulation due to fire by applied element method. In JCOSSAR2003, the fifth Japan conference on structural safety and reliability, Tokyo, Japan. Elkholy, S., Tagel-Din, H., & Meguro, K. (2003). Structural failure simulation due to fire by applied element method. In JCOSSAR2003, the fifth Japan conference on structural safety and reliability, Tokyo, Japan.
Zurück zum Zitat Elshaer, A., Mostafa, H., & Salem, H. (2017). Progressive collapse assessment of multistory reinforced concrete structures subjected to seismic actions. KSCE Journal of Civil Engineering, 21(1), 184–194.CrossRef Elshaer, A., Mostafa, H., & Salem, H. (2017). Progressive collapse assessment of multistory reinforced concrete structures subjected to seismic actions. KSCE Journal of Civil Engineering, 21(1), 184–194.CrossRef
Zurück zum Zitat Fanaie, N., Aghajani, S., & Afsar Dizaj, E. (2016). Strengthening of moment-resisting frame using cable–cylinder bracing. Advances in Structural Engineering, 19(11), 1736–1754.CrossRef Fanaie, N., Aghajani, S., & Afsar Dizaj, E. (2016). Strengthening of moment-resisting frame using cable–cylinder bracing. Advances in Structural Engineering, 19(11), 1736–1754.CrossRef
Zurück zum Zitat Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2011). Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal, 46(6), 348–363.CrossRef Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2011). Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal, 46(6), 348–363.CrossRef
Zurück zum Zitat Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2013). Robustness of multi-storey car parks under localised fire_Towards practical design recommendations. Journal of Constructional Steel Research, 90, 193–208.CrossRef Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2013). Robustness of multi-storey car parks under localised fire_Towards practical design recommendations. Journal of Constructional Steel Research, 90, 193–208.CrossRef
Zurück zum Zitat Fang, C., Izzuddin, B. A., Obiala, R., Elghazouli, A. Y., & Nethercot, D. A. (2012). Robustness of multi-storey car parks under vehicle fire. Journal of Constructional Steel Research, 75, 72–84.CrossRef Fang, C., Izzuddin, B. A., Obiala, R., Elghazouli, A. Y., & Nethercot, D. A. (2012). Robustness of multi-storey car parks under vehicle fire. Journal of Constructional Steel Research, 75, 72–84.CrossRef
Zurück zum Zitat Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive collapse resistance of GFRP-strengthened RC beam–slab subassemblages in a corner column–removal scenario. Journal of Composites for Construction, 23(1), 04018076.CrossRef Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive collapse resistance of GFRP-strengthened RC beam–slab subassemblages in a corner column–removal scenario. Journal of Composites for Construction, 23(1), 04018076.CrossRef
Zurück zum Zitat Feng, P., Qiang, H., Qin, W., & Gao, M. (2017). A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures. Engineering Structures, 147, 752–767.CrossRef Feng, P., Qiang, H., Qin, W., & Gao, M. (2017). A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures. Engineering Structures, 147, 752–767.CrossRef
Zurück zum Zitat Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(6), 1269–1278.CrossRef Fu, F. (2009). Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research, 65(6), 1269–1278.CrossRef
Zurück zum Zitat Fu, F. (2010). 3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings—Parametric study. Engineering Structures, 32(12), 3974–3980.CrossRef Fu, F. (2010). 3-D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings—Parametric study. Engineering Structures, 32(12), 3974–3980.CrossRef
Zurück zum Zitat General Services Administration (GSA). (2016). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington DC. General Services Administration (GSA). (2016). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington DC.
Zurück zum Zitat Hashemi Rezvani, F., Yousefi, A. M., & Ronagh, H. R. (2015). Effect of span length on progressie collapse behaviour of steel moment resisting frames. Structures, 3, 81–89.CrossRef Hashemi Rezvani, F., Yousefi, A. M., & Ronagh, H. R. (2015). Effect of span length on progressie collapse behaviour of steel moment resisting frames. Structures, 3, 81–89.CrossRef
Zurück zum Zitat Homaioon Ebrahimi, A., Ebadi Jamkhaneh, M., & Shokri Amiri, M. (2018). 3D finite-element analysis of steel moment frames including long-span entrance by strengthening steel cables and diagonal concentrically braced frames under progressive collapse. Practice Periodical on Structural Design and Construction, 23(4), 04018025.CrossRef Homaioon Ebrahimi, A., Ebadi Jamkhaneh, M., & Shokri Amiri, M. (2018). 3D finite-element analysis of steel moment frames including long-span entrance by strengthening steel cables and diagonal concentrically braced frames under progressive collapse. Practice Periodical on Structural Design and Construction, 23(4), 04018025.CrossRef
Zurück zum Zitat Hou, X., & Tagawa, H. (2009). Displacement-restraint bracing for seismic retrofit of steel moment frames. Journal of Constructional Steel Research, 65(5), 1096–1104.CrossRef Hou, X., & Tagawa, H. (2009). Displacement-restraint bracing for seismic retrofit of steel moment frames. Journal of Constructional Steel Research, 65(5), 1096–1104.CrossRef
Zurück zum Zitat Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering Structures, 30(5), 1308–1318.CrossRef Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering Structures, 30(5), 1308–1318.CrossRef
Zurück zum Zitat Khaloo, A., & Omidi, H. (2018). Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse. Steel and Composite Structures, 26(5), 549–556. Khaloo, A., & Omidi, H. (2018). Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse. Steel and Composite Structures, 26(5), 549–556.
Zurück zum Zitat Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.CrossRef Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.CrossRef
Zurück zum Zitat Kiakojouri, F., Sheidaii, M. R., De Biagi, V., & Chiaia, B. (2021). Progressive collapse of structures: A discussion on annotated nomenclature. Structures, 29, 1417–1423.CrossRef Kiakojouri, F., Sheidaii, M. R., De Biagi, V., & Chiaia, B. (2021). Progressive collapse of structures: A discussion on annotated nomenclature. Structures, 29, 1417–1423.CrossRef
Zurück zum Zitat Kim, H. S., & Wee, H. H. (2016). Separation strain for progressive collapse analysis of reinforced concrete building using applied element method. Advances in Structural Engineering, 19(3), 437–448.CrossRef Kim, H. S., & Wee, H. H. (2016). Separation strain for progressive collapse analysis of reinforced concrete building using applied element method. Advances in Structural Engineering, 19(3), 437–448.CrossRef
Zurück zum Zitat Kim, J., Choi, H., & Min, K. W. (2011). Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures. The Structural Design of Tall and Special Buildings, 20(4), 515–537.CrossRef Kim, J., Choi, H., & Min, K. W. (2011). Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures. The Structural Design of Tall and Special Buildings, 20(4), 515–537.CrossRef
Zurück zum Zitat Kim, J., & Kim, T. (2009). Assessment of progressive collapse-resisting capacity of steel moment frames. Journal of Constructional Steel Research, 65(1), 169–179.CrossRef Kim, J., & Kim, T. (2009). Assessment of progressive collapse-resisting capacity of steel moment frames. Journal of Constructional Steel Research, 65(1), 169–179.CrossRef
Zurück zum Zitat Kim, J., & Lee, H. (2013). Progressive collapse-resisting capacity of framed structures with infill steel panels. Journal of Constructional Steel Research, 89, 145–152.CrossRef Kim, J., & Lee, H. (2013). Progressive collapse-resisting capacity of framed structures with infill steel panels. Journal of Constructional Steel Research, 89, 145–152.CrossRef
Zurück zum Zitat Kim, J., Lee, S., & Min, K. W. (2014). Design of MR dampers to prevent progressive collapse of moment frames. Structural Engineering and Mechanics, 52(2), 291–306.CrossRef Kim, J., Lee, S., & Min, K. W. (2014). Design of MR dampers to prevent progressive collapse of moment frames. Structural Engineering and Mechanics, 52(2), 291–306.CrossRef
Zurück zum Zitat Kim, J., & Park, J. (2012). Progressive collapse resisting capacity of building structures with outrigger trusses. The Structural Design of Tall and Special Buildings, 21(8), 566–577.CrossRef Kim, J., & Park, J. (2012). Progressive collapse resisting capacity of building structures with outrigger trusses. The Structural Design of Tall and Special Buildings, 21(8), 566–577.CrossRef
Zurück zum Zitat Liu, T., Xiao, Y., Yang, J., & Chen, B. S. (2017). CFRP strip cable retrofit of RC frame for collapse resistance. Journal of Composites for Construction, 21(1), 04016067.CrossRef Liu, T., Xiao, Y., Yang, J., & Chen, B. S. (2017). CFRP strip cable retrofit of RC frame for collapse resistance. Journal of Composites for Construction, 21(1), 04016067.CrossRef
Zurück zum Zitat Mehrabi, M. H., Ibrahim, Z., Ghodsi, S. S., & Suhatril, M. (2019). Seismic characteristics of X-cable braced frames bundled with a pre-compressed spring. Soil Dynamics and Earthquake Engineering, 116, 732–746.CrossRef Mehrabi, M. H., Ibrahim, Z., Ghodsi, S. S., & Suhatril, M. (2019). Seismic characteristics of X-cable braced frames bundled with a pre-compressed spring. Soil Dynamics and Earthquake Engineering, 116, 732–746.CrossRef
Zurück zum Zitat Musavi-Z, M., & Sheidaii, M. R. (2021). Effect of seismic resistance capacity of moment frames on progressive collapse response of concentrically braced dual systems. Asian Journal of Civil Engineering, 22(1), 23–31.CrossRef Musavi-Z, M., & Sheidaii, M. R. (2021). Effect of seismic resistance capacity of moment frames on progressive collapse response of concentrically braced dual systems. Asian Journal of Civil Engineering, 22(1), 23–31.CrossRef
Zurück zum Zitat Naji, A., & Ommetalab, M. R. (2019). Horizontal bracing to enhance progressive collapse resistance of steel moment frames. The Structural Design of Tall and Special Buildings., 28(5), e1563.CrossRef Naji, A., & Ommetalab, M. R. (2019). Horizontal bracing to enhance progressive collapse resistance of steel moment frames. The Structural Design of Tall and Special Buildings., 28(5), e1563.CrossRef
Zurück zum Zitat National Institute of Standards and Technology (NIST). (2007). Final report on the collapse of the World Trade Center towers. US. National Institute of Standards and Technology (NIST). (2007). Final report on the collapse of the World Trade Center towers. US.
Zurück zum Zitat Pang, B., Wang, F., Yang, J., Nyunn, S., & Azim, I. (2021). Performance of slabs in reinforced concrete structures to resist progressive collapse. Structures, 33, 4843–4856.CrossRef Pang, B., Wang, F., Yang, J., Nyunn, S., & Azim, I. (2021). Performance of slabs in reinforced concrete structures to resist progressive collapse. Structures, 33, 4843–4856.CrossRef
Zurück zum Zitat Qian, K., Lan, D. Q., Li, S. K., & Fu, F. (2021). Effects of infill walls on load resistance of multi-story RC frames to mitigate progressive collapse. Structures, 33, 2534–2545.CrossRef Qian, K., Lan, D. Q., Li, S. K., & Fu, F. (2021). Effects of infill walls on load resistance of multi-story RC frames to mitigate progressive collapse. Structures, 33, 2534–2545.CrossRef
Zurück zum Zitat Qian, K., & Li, B. (2013). Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates. Journal of Composites for Construction, 17(4), 554–565.CrossRef Qian, K., & Li, B. (2013). Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates. Journal of Composites for Construction, 17(4), 554–565.CrossRef
Zurück zum Zitat Qian, K., Weng, Y. H., & Li, B. (2019). Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings. Journal of Structural Engineering, 145(2), 04018248.CrossRef Qian, K., Weng, Y. H., & Li, B. (2019). Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings. Journal of Structural Engineering, 145(2), 04018248.CrossRef
Zurück zum Zitat Qiu, L., Lin, F., & Wu, K. (2020). Improving progressive collapse resistance of RC beam–column subassemblages using external steel cables. Journal of Performance of Constructed Facilities, 34(1), 04019079.CrossRef Qiu, L., Lin, F., & Wu, K. (2020). Improving progressive collapse resistance of RC beam–column subassemblages using external steel cables. Journal of Performance of Constructed Facilities, 34(1), 04019079.CrossRef
Zurück zum Zitat Rezazadeh, P., Sheidaii, M. R., & Salmasi, A. (2019). Assessment of progressive collapse behaviour of moment frames strengthened with knee elements. International Journal of Steel Structures, 19(2), 517–529.CrossRef Rezazadeh, P., Sheidaii, M. R., & Salmasi, A. (2019). Assessment of progressive collapse behaviour of moment frames strengthened with knee elements. International Journal of Steel Structures, 19(2), 517–529.CrossRef
Zurück zum Zitat Starossek, U. (2009). Progressive collapse of structures. Thomas Telford.CrossRef Starossek, U. (2009). Progressive collapse of structures. Thomas Telford.CrossRef
Zurück zum Zitat Stephen, D., Lam, D., Forth, J., Ye, J., & Tsavdaridis, K. D. (2019). An evaluation of modelling approaches and column removal time on progressive collapse of building. Journal of Constructional Steel Research, 153, 243–253.CrossRef Stephen, D., Lam, D., Forth, J., Ye, J., & Tsavdaridis, K. D. (2019). An evaluation of modelling approaches and column removal time on progressive collapse of building. Journal of Constructional Steel Research, 153, 243–253.CrossRef
Zurück zum Zitat Stochino, F., Bedon, C., Sagaseta, J., & Honfi, D. (2019). Robustness and resilience of structures under extreme loads. Advances in Civil Engineering, 2019, 4291703.CrossRef Stochino, F., Bedon, C., Sagaseta, J., & Honfi, D. (2019). Robustness and resilience of structures under extreme loads. Advances in Civil Engineering, 2019, 4291703.CrossRef
Zurück zum Zitat Structural Analysis Program (SAP2000). (2004). Computers and structures. Berkeley, CA. Structural Analysis Program (SAP2000). (2004). Computers and structures. Berkeley, CA.
Zurück zum Zitat Tan, S., & Astaneh-Asl, A. (2003). Use of steel cables to prevent progressive collapse of existing buildings. In Proceedings of sixth conference on tall buildings in seismic regions. Tan, S., & Astaneh-Asl, A. (2003). Use of steel cables to prevent progressive collapse of existing buildings. In Proceedings of sixth conference on tall buildings in seismic regions.
Zurück zum Zitat Tian, Y., Lin, K., Zhang, L., Lu, X., & Xue, H. (2021). Novel seismic–progressive collapse resilient super-tall building system. Journal of Building Engineering, 41, 102790.CrossRef Tian, Y., Lin, K., Zhang, L., Lu, X., & Xue, H. (2021). Novel seismic–progressive collapse resilient super-tall building system. Journal of Building Engineering, 41, 102790.CrossRef
Zurück zum Zitat Unified Facilities Criteria (UFC). (2016). Design of buildings to resist progressive collapse. Washington DC. Unified Facilities Criteria (UFC). (2016). Design of buildings to resist progressive collapse. Washington DC.
Zurück zum Zitat Ventura, A., De Biagi, V., & Chiaia, B. (2018). Structural robustness of RC frame buildings under threat-independent damage scenarios. Structural Engineering and Mechanics, 65(6), 689–698. Ventura, A., De Biagi, V., & Chiaia, B. (2018). Structural robustness of RC frame buildings under threat-independent damage scenarios. Structural Engineering and Mechanics, 65(6), 689–698.
Zurück zum Zitat Vieira, A. D., Triantafyllou, S. P., & Bournas, D. A. (2020). Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement. Engineering Structures, 207, 110002.CrossRef Vieira, A. D., Triantafyllou, S. P., & Bournas, D. A. (2020). Strengthening of RC frame subassemblies against progressive collapse using TRM and NSM reinforcement. Engineering Structures, 207, 110002.CrossRef
Zurück zum Zitat Yu, J., Zhu, Y., Wei, F., & Gao, Q. (2020). Seismic behavior of renovated RC frame after column removal and retrofitting with steel X-bracing and jacketing. Journal of Performance of Constructed Facilities, 34(3), 04020020.CrossRef Yu, J., Zhu, Y., Wei, F., & Gao, Q. (2020). Seismic behavior of renovated RC frame after column removal and retrofitting with steel X-bracing and jacketing. Journal of Performance of Constructed Facilities, 34(3), 04020020.CrossRef
Zurück zum Zitat Zahrai, S. M., & Ezoddin, A. (2018). Cap truss and steel strut to resist progressive collapse in RC frame structures. Steel and Composite Structures, 26(5), 635–647. Zahrai, S. M., & Ezoddin, A. (2018). Cap truss and steel strut to resist progressive collapse in RC frame structures. Steel and Composite Structures, 26(5), 635–647.
Zurück zum Zitat Zhou, Q., & Yu, T. X. (2004). Use of high-efficiency energy absorbing device to arrest progressive collapse of tall building. Journal of Engineering Mechanics, 130(10), 1177–1187.CrossRef Zhou, Q., & Yu, T. X. (2004). Use of high-efficiency energy absorbing device to arrest progressive collapse of tall building. Journal of Engineering Mechanics, 130(10), 1177–1187.CrossRef
Metadaten
Titel
Improving Progressive Collapse Performance of Steel Moment-Resisting Frames Through X-Bracing Slack Cables
verfasst von
Maryam Musavi-Z
Mohammad Reza Sheidaii
Publikationsdatum
20.09.2022
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2022
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-022-00668-1

Weitere Artikel der Ausgabe 5/2022

International Journal of Steel Structures 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.