Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2017

28.04.2017

Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer

verfasst von: Muhammad Zharfan Mohd Halizan, Nur Adilah Roslan, Shahino Mah Abdullah, Nurain Abdul Halim, Thamil Selvi Velayutham, Kai Lin Woon, Azzuliani Supangat

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work aims at improving the performance of vertical organic field effect transistor (VOFET) by synthesizing the different morphology of dielectric layer; porous and non-porous to be used in the fabrication of 3-dimensional (3D) VOFET. In this work, poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] 75/25 have been used as a dielectric layer in the fabrication of 3D VOFET. To produce the 3D VOFET, porous alumina template is applied as to allow the replicating process between the template and P(VDF-TrFE) to occur. It is found that the replicating process has generated the porous structure of P(VDF-TrFE). Two types of VOFET, one with the integration of porous and one without the porous have been fabricated and characterized. VOFET without the porous has the current of 3.5 × 10−4 A obtained at drain-source voltage (VDS) of 25 V with the turn-on voltage of 10 V. Meanwhile, the VOFET integrated with porous recorded a better current of 2.0 × 10−3 A at VDS of 25 V with the turn-on voltage of 7 V.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef
2.
Zurück zum Zitat T. Minami, T. Sato, T. Minamiki, K. Fukuda, D. Kumaki, S. Tokito, A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 74, 45–48 (2015)CrossRef T. Minami, T. Sato, T. Minamiki, K. Fukuda, D. Kumaki, S. Tokito, A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosens. Bioelectron. 74, 45–48 (2015)CrossRef
3.
Zurück zum Zitat M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)CrossRef M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)CrossRef
4.
Zurück zum Zitat B. Geffroy, P. Le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)CrossRef B. Geffroy, P. Le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)CrossRef
5.
Zurück zum Zitat Y. Sun, Y. Liu, D. Zhu, Advances in organic field-effect transistors. J. Mater. Chem. 15, 53–65 (2005)CrossRef Y. Sun, Y. Liu, D. Zhu, Advances in organic field-effect transistors. J. Mater. Chem. 15, 53–65 (2005)CrossRef
6.
Zurück zum Zitat C. Rost, S. Karg, W. Riess, M.A. Loi, M. Murgia, M. Muccini, Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004)CrossRef C. Rost, S. Karg, W. Riess, M.A. Loi, M. Murgia, M. Muccini, Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004)CrossRef
7.
Zurück zum Zitat J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 237 (2008) J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 237 (2008)
8.
Zurück zum Zitat F. So, Organic electronics: materials, processing, devices and applications (CRC Press, Boca Raton, 2009)CrossRef F. So, Organic electronics: materials, processing, devices and applications (CRC Press, Boca Raton, 2009)CrossRef
9.
Zurück zum Zitat A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 302 (2009)CrossRef A.J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G.L. Frey, N. Tessler, Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Appl. Phys. Lett. 95, 302 (2009)CrossRef
10.
Zurück zum Zitat C. Bartic, H. Jansen, A. Campitelli, S. Borghs, Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65–72 (2002)CrossRef C. Bartic, H. Jansen, A. Campitelli, S. Borghs, Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65–72 (2002)CrossRef
11.
Zurück zum Zitat C. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. Shaw, Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)CrossRef C. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. Shaw, Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)CrossRef
12.
Zurück zum Zitat C.S. Kim, S.J. Jo, J.B. Kim, S.Y. Ryu, J.H. Noh, H.K. Baik, S.J. Lee, Y.S. Kim, Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors. J. Appl. Phys. 102, 126101 (2007)CrossRef C.S. Kim, S.J. Jo, J.B. Kim, S.Y. Ryu, J.H. Noh, H.K. Baik, S.J. Lee, Y.S. Kim, Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors. J. Appl. Phys. 102, 126101 (2007)CrossRef
13.
Zurück zum Zitat M. Latour, R. Moreira, Submillimetric study of a poly(vinylidene fluoride-trifluorethylene) copolymer under electrical and mechanical stresses. Electrical Insulation & Dielectric Phenomena, 1986. Annual Report 1986. Conference on, IEEE, 1986, pp. 345–350. M. Latour, R. Moreira, Submillimetric study of a poly(vinylidene fluoride-trifluorethylene) copolymer under electrical and mechanical stresses. Electrical Insulation & Dielectric Phenomena, 1986. Annual Report 1986. Conference on, IEEE, 1986, pp. 345–350.
14.
Zurück zum Zitat Y. Nakagawa, Y. Hashizume, T. Nakajima, S. Okamura, Ferroelectric properties of vinylidene fluoride/tetrafluoroethylene copolymer thin films consisting of needle-like crystals. Jpn. J. Appl. Phys. 55, 051601 (2016)CrossRef Y. Nakagawa, Y. Hashizume, T. Nakajima, S. Okamura, Ferroelectric properties of vinylidene fluoride/tetrafluoroethylene copolymer thin films consisting of needle-like crystals. Jpn. J. Appl. Phys. 55, 051601 (2016)CrossRef
15.
Zurück zum Zitat T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. Multinatl. J. 18, 143–211 (1989)CrossRef T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. Multinatl. J. 18, 143–211 (1989)CrossRef
16.
Zurück zum Zitat Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011)CrossRef Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011)CrossRef
17.
Zurück zum Zitat G.A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, A.M. Ionescu, Low voltage ferroelectric FET with sub-100nm copolymer P (VDF-TrFE) gate dielectric for non-volatile 1 T memory, Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European, IEEE, 2008, pp. 162–165 G.A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, A.M. Ionescu, Low voltage ferroelectric FET with sub-100nm copolymer P (VDF-TrFE) gate dielectric for non-volatile 1 T memory, Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European, IEEE, 2008, pp. 162–165
18.
Zurück zum Zitat N. Weber, Y.-S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6, 3550–3556 (2010)CrossRef N. Weber, Y.-S. Lee, S. Shanmugasundaram, M. Jaffe, T.L. Arinzeh, Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 6, 3550–3556 (2010)CrossRef
19.
Zurück zum Zitat R.I. Mahdi, W. Gan, W. Majid, Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators, Sensors 14 (2014) 19115–19127CrossRef R.I. Mahdi, W. Gan, W. Majid, Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators, Sensors 14 (2014) 19115–19127CrossRef
20.
Zurück zum Zitat H. Xu, G. Shanthi, V. Bharti, Q. Zhang, T. Ramotowski, Structural, conformational, and polarization changes of poly(vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules 33, 4125–4131 (2000)CrossRef H. Xu, G. Shanthi, V. Bharti, Q. Zhang, T. Ramotowski, Structural, conformational, and polarization changes of poly(vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules 33, 4125–4131 (2000)CrossRef
21.
Zurück zum Zitat Z. Hu, M. Tian, B. Nysten, A.M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 8, 62–67 (2009)CrossRef Z. Hu, M. Tian, B. Nysten, A.M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 8, 62–67 (2009)CrossRef
22.
Zurück zum Zitat D. Mao, B.E. Gnade, M.A. Quevedo-Lopez, Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer (INTECH Open Access Publisher, Rijeka, 2011)CrossRef D. Mao, B.E. Gnade, M.A. Quevedo-Lopez, Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer (INTECH Open Access Publisher, Rijeka, 2011)CrossRef
23.
Zurück zum Zitat X. Wang, G.-R. Han, Fabrication and characterization of anodic aluminum oxide template. Microelectron. Eng. 66, 166–170 (2003)CrossRef X. Wang, G.-R. Han, Fabrication and characterization of anodic aluminum oxide template. Microelectron. Eng. 66, 166–170 (2003)CrossRef
24.
Zurück zum Zitat M.P. Houng, W.L. Lu, T.H. Yang, K.W. Lee, Characterization of the nanoporous template using anodic alumina method, J. Nanomater. (2014). doi:10.1155/2014/130716 M.P. Houng, W.L. Lu, T.H. Yang, K.W. Lee, Characterization of the nanoporous template using anodic alumina method, J. Nanomater. (2014). doi:10.​1155/​2014/​130716
25.
Zurück zum Zitat G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)CrossRef G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)CrossRef
26.
Zurück zum Zitat M.Z.M. Halizan, A.H.A. Makinudin, A. Supangat, Infiltration of VOPcPhO into porous alumina template grown by in situ method. RSC Adv. 6, 37574–37582 (2016)CrossRef M.Z.M. Halizan, A.H.A. Makinudin, A. Supangat, Infiltration of VOPcPhO into porous alumina template grown by in situ method. RSC Adv. 6, 37574–37582 (2016)CrossRef
27.
Zurück zum Zitat C.M. Costa, L. Rodrigues, V. Sencadas, M.M. Silva, S. Lanceros-Méndez, Effect of the microstructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications. Solid State Ion. 217, 19–26 (2012)CrossRef C.M. Costa, L. Rodrigues, V. Sencadas, M.M. Silva, S. Lanceros-Méndez, Effect of the microstructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications. Solid State Ion. 217, 19–26 (2012)CrossRef
28.
Zurück zum Zitat J.-H. Lim, A. Rotaru, S.-G. Min, L. Malkinski, J.B. Wiley, Synthesis of mild–hard AAO templates for studying magnetic interactions between metal nanowires. J. Mater. Chem. 20, 9246–9252 (2010)CrossRef J.-H. Lim, A. Rotaru, S.-G. Min, L. Malkinski, J.B. Wiley, Synthesis of mild–hard AAO templates for studying magnetic interactions between metal nanowires. J. Mater. Chem. 20, 9246–9252 (2010)CrossRef
29.
Zurück zum Zitat M.S. Sander, L.S. Tan, Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Adv. Funct. Mater. 13, 393–397 (2003)CrossRef M.S. Sander, L.S. Tan, Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates. Adv. Funct. Mater. 13, 393–397 (2003)CrossRef
30.
Zurück zum Zitat X. Han, W. Shen, Improved two-step anodization technique for ordered porous anodic aluminum membranes. J. Electroanal. Chem. 655, 56–64 (2011)CrossRef X. Han, W. Shen, Improved two-step anodization technique for ordered porous anodic aluminum membranes. J. Electroanal. Chem. 655, 56–64 (2011)CrossRef
31.
Zurück zum Zitat X. Zhao, S.-K. Seo, U.-J. Lee, K.-H. Lee, Controlled electrochemical dissolution of anodic aluminum oxide for preparation of open-through pore structures. J. Electrochem. Soc. 154, C553–C557 (2007)CrossRef X. Zhao, S.-K. Seo, U.-J. Lee, K.-H. Lee, Controlled electrochemical dissolution of anodic aluminum oxide for preparation of open-through pore structures. J. Electrochem. Soc. 154, C553–C557 (2007)CrossRef
32.
Zurück zum Zitat N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)CrossRef N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)CrossRef
33.
Zurück zum Zitat A.J. Ben-Sasson, N. Tessler, Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110, 044501 (2011)CrossRef A.J. Ben-Sasson, N. Tessler, Patterned electrode vertical field effect transistor: theory and experiment. J. Appl. Phys. 110, 044501 (2011)CrossRef
34.
Zurück zum Zitat K. Kudo, M. Iizuka, S. Kuniyoshi, K. Tanaka, Device characteristics of lateral and vertical type organic field effect transistors. Thin Solid Films 393, 362–367 (2001)CrossRef K. Kudo, M. Iizuka, S. Kuniyoshi, K. Tanaka, Device characteristics of lateral and vertical type organic field effect transistors. Thin Solid Films 393, 362–367 (2001)CrossRef
35.
Zurück zum Zitat A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149–2152 (2015)CrossRef A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS Appl. Mater. Interfaces 7, 2149–2152 (2015)CrossRef
36.
Zurück zum Zitat A.H.A. Makinudin, M.S. Fakir, A. Supangat, Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties. Nanoscale Res. Lett. 10, 1–8 (2015)CrossRef A.H.A. Makinudin, M.S. Fakir, A. Supangat, Metal phthalocyanine: fullerene composite nanotubes via templating method for enhanced properties. Nanoscale Res. Lett. 10, 1–8 (2015)CrossRef
37.
Zurück zum Zitat G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)CrossRef G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)CrossRef
38.
Zurück zum Zitat X. Chen, W. Ou-Yang, M. Weis, D. Taguchi, T. Manaka, M. Iwamoto, Reduction of hysteresis in organic field-effect transistor by ferroelectric gate dielectric. Jpn. J. Appl. Phys. 49, 021601 (2010)CrossRef X. Chen, W. Ou-Yang, M. Weis, D. Taguchi, T. Manaka, M. Iwamoto, Reduction of hysteresis in organic field-effect transistor by ferroelectric gate dielectric. Jpn. J. Appl. Phys. 49, 021601 (2010)CrossRef
Metadaten
Titel
Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer
verfasst von
Muhammad Zharfan Mohd Halizan
Nur Adilah Roslan
Shahino Mah Abdullah
Nurain Abdul Halim
Thamil Selvi Velayutham
Kai Lin Woon
Azzuliani Supangat
Publikationsdatum
28.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7005-4

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science: Materials in Electronics 16/2017 Zur Ausgabe

Neuer Inhalt