Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2019

27.03.2019

Improving the optoelectrical properties of Cu2ZnSnS4 using gold and graphene nano-fillers

verfasst von: Atul Kumar, Ajay D. Thakur

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have investigated photo-response of Cu2ZnSnS4 (CZTS) and have explored ways for enhancing the photo-response and conductivity using suitable nano-compositing strategies. In phase pure CZTS, gold nanoparticles and graphene flakes are used as nanofillers to make nano-composite samples. Photo-response of as-grown CZTS is improved by compositing gold with the observation of Ilight/Idark=1.29. With increasing gold nanoparticle size conductivity improved for CZTS gold composite. Compositing 1% graphene by weight has enhanced the current flow in the CTZS by 125 times. The graphene weight ratio in the composite is limited by absorbance reduction. The demonstrated high-quality CZTS nano-composite samples with improved optoelectrical properties holds tremendous promise for photovoltaic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407 (1997)CrossRef H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407 (1997)CrossRef
2.
Zurück zum Zitat K.J. Tiwari, D.S. Prem Kumar, R.C. Mallik, P. Malar, Ball mill synthesis of bulk quaternary Cu2ZnSnSe4 and thermoelectric. J. Electron. Mater. 46, 30 (2017)CrossRef K.J. Tiwari, D.S. Prem Kumar, R.C. Mallik, P. Malar, Ball mill synthesis of bulk quaternary Cu2ZnSnSe4 and thermoelectric. J. Electron. Mater. 46, 30 (2017)CrossRef
3.
Zurück zum Zitat K.V. Gaurav, S.W. Shin, U.M. Patil, P.R. Deshmukh, M.P. Suryawanshi, G.L. Agawane, S.M. Pawar, P.S. Patil, J.Y. Lee, C.D. Lokhande, J.H. Kim, Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sensors Actuators B 190, 408 (2014)CrossRef K.V. Gaurav, S.W. Shin, U.M. Patil, P.R. Deshmukh, M.P. Suryawanshi, G.L. Agawane, S.M. Pawar, P.S. Patil, J.Y. Lee, C.D. Lokhande, J.H. Kim, Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sensors Actuators B 190, 408 (2014)CrossRef
4.
Zurück zum Zitat W. Zhou, Y. Zhou, J. Feng, J. Zhang, S. Wu, X. Guo, X. Cao, Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem. Phys. Lett. 546, 115 (2012)CrossRef W. Zhou, Y. Zhou, J. Feng, J. Zhang, S. Wu, X. Guo, X. Cao, Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem. Phys. Lett. 546, 115 (2012)CrossRef
5.
Zurück zum Zitat J. Wang, P. Zhang, X. Song, L. Gao, Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties. RSC Adv. 4, 27805–27810 (2014)CrossRef J. Wang, P. Zhang, X. Song, L. Gao, Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties. RSC Adv. 4, 27805–27810 (2014)CrossRef
6.
Zurück zum Zitat F. Jiang, H. Shen, Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Adv. 3, 23474 (2013)CrossRef F. Jiang, H. Shen, Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Adv. 3, 23474 (2013)CrossRef
7.
Zurück zum Zitat C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009)CrossRef C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009)CrossRef
8.
Zurück zum Zitat A. Elshkaki, T.E. Graedel, Solar cell metals, and their hosts: a tale of oversupply and undersupply. Appl. Energy 158, 167–177 (2015)CrossRef A. Elshkaki, T.E. Graedel, Solar cell metals, and their hosts: a tale of oversupply and undersupply. Appl. Energy 158, 167–177 (2015)CrossRef
9.
Zurück zum Zitat A. Walsh, S. Chen, S. Wei, X. Gong, Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012)CrossRef A. Walsh, S. Chen, S. Wei, X. Gong, Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400 (2012)CrossRef
10.
Zurück zum Zitat T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, B. Shin, Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Commun. 4, 159 (2014)CrossRef T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, B. Shin, Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Commun. 4, 159 (2014)CrossRef
11.
Zurück zum Zitat A. Polizzotti, I.L. Repins, R. Noufi, S.-H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 6, 3171 (2013)CrossRef A. Polizzotti, I.L. Repins, R. Noufi, S.-H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 6, 3171 (2013)CrossRef
12.
Zurück zum Zitat S. Chen, L. Wang, A. Walsh, X.G. Gong, S. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)CrossRef S. Chen, L. Wang, A. Walsh, X.G. Gong, S. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)CrossRef
13.
Zurück zum Zitat C.-Y. Su, C.-Y. Chiu, J.-M. Ting, Cu2ZnSnS4 absorption layers with controlled phase purity. Sci. Rep. 5, 9291 (2015)CrossRef C.-Y. Su, C.-Y. Chiu, J.-M. Ting, Cu2ZnSnS4 absorption layers with controlled phase purity. Sci. Rep. 5, 9291 (2015)CrossRef
14.
Zurück zum Zitat M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134 (2015)CrossRef M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134 (2015)CrossRef
15.
Zurück zum Zitat N. Muhunthan, O.P. Singh, V.N. Singh, K.N. Sood, Rashmi, *Electric field-effect-assisted persistent photoconductivity in CZTS. Adv. Mater. Lett. 6, 290 (2015) N. Muhunthan, O.P. Singh, V.N. Singh, K.N. Sood, Rashmi, *Electric field-effect-assisted persistent photoconductivity in CZTS. Adv. Mater. Lett. 6, 290 (2015)
16.
Zurück zum Zitat J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutiérrez, A. Abelenda, F.M. Matinaga, J.P. Leitão, A.F. da Cunha, Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D Appl. Phys. 46, 155107 (2013)CrossRef J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutiérrez, A. Abelenda, F.M. Matinaga, J.P. Leitão, A.F. da Cunha, Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D Appl. Phys. 46, 155107 (2013)CrossRef
17.
Zurück zum Zitat A. Abelenda, M. Sánchez, G.M. Ribeiro, P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J.P. Leitão, M.I.N. da Silva, J.C. González, Anomalous persistent photoconductivity in Cu2ZnSnS4 thin films and solar cells. Sol. Energy Mater. Sol. Cells 137, 164 (2015)CrossRef A. Abelenda, M. Sánchez, G.M. Ribeiro, P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J.P. Leitão, M.I.N. da Silva, J.C. González, Anomalous persistent photoconductivity in Cu2ZnSnS4 thin films and solar cells. Sol. Energy Mater. Sol. Cells 137, 164 (2015)CrossRef
18.
Zurück zum Zitat F. Jiang, H. Shen, W. Wang, Optical and electrical properties of Cu2ZnSnS4 film prepared by sulfurization method. J. Electron. Mater. 41, 8 (2012) F. Jiang, H. Shen, W. Wang, Optical and electrical properties of Cu2ZnSnS4 film prepared by sulfurization method. J. Electron. Mater. 41, 8 (2012)
19.
Zurück zum Zitat K.S. Gour, O.P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T.D. Senguttuvan, V.N. Singh, Enhanced photoresponse of Cu2ZnSn(S,Se)4 based photodetector in visible range. J. Alloys Compd. 694, 119 (2017)CrossRef K.S. Gour, O.P. Singh, B. Bhattacharyya, R. Parmar, S. Husale, T.D. Senguttuvan, V.N. Singh, Enhanced photoresponse of Cu2ZnSn(S,Se)4 based photodetector in visible range. J. Alloys Compd. 694, 119 (2017)CrossRef
20.
Zurück zum Zitat O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol. Energy Mater. Sol. Cells 157, 28 (2016)CrossRef O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol. Energy Mater. Sol. Cells 157, 28 (2016)CrossRef
21.
Zurück zum Zitat F. Al-Hazmi, F. Yakuphanoglu, Cu2ZnSnS4: graphene oxide nano-composites based photoresponse devices. J. Alloys Compd. 653, 561 (2015)CrossRef F. Al-Hazmi, F. Yakuphanoglu, Cu2ZnSnS4: graphene oxide nano-composites based photoresponse devices. J. Alloys Compd. 653, 561 (2015)CrossRef
22.
Zurück zum Zitat M. Banavoth, S. Dias, S.B. Krupanidhi, Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering. AIP Adv. 3, 082132 (2013)CrossRef M. Banavoth, S. Dias, S.B. Krupanidhi, Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering. AIP Adv. 3, 082132 (2013)CrossRef
23.
Zurück zum Zitat T.K. Chaudhuri, D. Tiwari, Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Sol. Energy Mater. Sol. Cells 101, 46–50 (2012)CrossRef T.K. Chaudhuri, D. Tiwari, Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Sol. Energy Mater. Sol. Cells 101, 46–50 (2012)CrossRef
24.
Zurück zum Zitat W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961)CrossRef
25.
Zurück zum Zitat G.S. Paul, P. Agarwal, Persistent photocurrent and decay studies in CdS nanorods thin films. J. Appl. Phys. 106, 103705 (2009)CrossRef G.S. Paul, P. Agarwal, Persistent photocurrent and decay studies in CdS nanorods thin films. J. Appl. Phys. 106, 103705 (2009)CrossRef
26.
Zurück zum Zitat Th. Meyer, F. Engelhardt, J. Parisi, U. Rau, Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline CuInGaSe2 thin films. J. Appl. Phys. 91, 5093 (2002)CrossRef Th. Meyer, F. Engelhardt, J. Parisi, U. Rau, Spectral dependence and Hall effect of persistent photoconductivity in polycrystalline CuInGaSe2 thin films. J. Appl. Phys. 91, 5093 (2002)CrossRef
27.
Zurück zum Zitat A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film. Superlattices Microstruct. 85, 776–783 (2015)CrossRef A. Yadav, P. Agarwal, Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film. Superlattices Microstruct. 85, 776–783 (2015)CrossRef
28.
Zurück zum Zitat D.P. Suhas, T.M. Aminabhavi, H.M. Jeong, A.V. Raghu, Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv. 5, 100984 (2015)CrossRef D.P. Suhas, T.M. Aminabhavi, H.M. Jeong, A.V. Raghu, Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv. 5, 100984 (2015)CrossRef
29.
Zurück zum Zitat S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 53, 14474–14484 (2014)CrossRef S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 53, 14474–14484 (2014)CrossRef
30.
Zurück zum Zitat D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55(11), 1099–1110 (2016)CrossRef D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Part B 55(11), 1099–1110 (2016)CrossRef
31.
Zurück zum Zitat S.J. Han, H.-I. Lee, H.M. Jeong, B.K. Kim, A.V. Raghu, K.R. eddy, Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B 53(7), 1193–1204 (2014)CrossRef S.J. Han, H.-I. Lee, H.M. Jeong, B.K. Kim, A.V. Raghu, K.R. eddy, Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B 53(7), 1193–1204 (2014)CrossRef
32.
Zurück zum Zitat K.T. Kim, T.D. Dao, H.M. Jeong, R.V. Anjanapura, T.M. Aminabhavi, Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater. Chem. Phys. 153, 291–300 (2015)CrossRef K.T. Kim, T.D. Dao, H.M. Jeong, R.V. Anjanapura, T.M. Aminabhavi, Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater. Chem. Phys. 153, 291–300 (2015)CrossRef
33.
Zurück zum Zitat M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)CrossRef M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)CrossRef
34.
Zurück zum Zitat I. Chakraborty, K.J. Bodurtha, N.J. Heeder, M.P. Godfrin, A. Tripathi, R.H. Hurt, A. Shukla, A. Bose, Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 6, 16472–16475 (2014)CrossRef I. Chakraborty, K.J. Bodurtha, N.J. Heeder, M.P. Godfrin, A. Tripathi, R.H. Hurt, A. Shukla, A. Bose, Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 6, 16472–16475 (2014)CrossRef
35.
Zurück zum Zitat W. Lü, J. Chen, Y. Wu, L. Duan, Y. Yang, X. Ge, Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 9, 148 (2014)CrossRef W. Lü, J. Chen, Y. Wu, L. Duan, Y. Yang, X. Ge, Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 9, 148 (2014)CrossRef
36.
Zurück zum Zitat P.S. Chandrasekhar, V.K. Komarala, Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance. RSC Adv. 7, 28610 (2017)CrossRef P.S. Chandrasekhar, V.K. Komarala, Graphene/ZnO nanocomposite as an electron transport layer for perovskite solar cells; the effect of graphene concentration on photovoltaic performance. RSC Adv. 7, 28610 (2017)CrossRef
37.
Zurück zum Zitat L.Y. Ozer, C. Garlisi, H. Oladipo, M. Pagliaro, S.A. Sharief, A. Yusuf, S. Almheiri, G. Palmisano, Inorganic semiconductors-graphene composites in photo(electro)catalysis: synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C Photobiochem. Rev. 33, 132–164 (2017)CrossRef L.Y. Ozer, C. Garlisi, H. Oladipo, M. Pagliaro, S.A. Sharief, A. Yusuf, S. Almheiri, G. Palmisano, Inorganic semiconductors-graphene composites in photo(electro)catalysis: synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C Photobiochem. Rev. 33, 132–164 (2017)CrossRef
38.
Zurück zum Zitat N. Gao, X. Fang, Synthesis and development of graphene—inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015)CrossRef N. Gao, X. Fang, Synthesis and development of graphene—inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015)CrossRef
39.
Zurück zum Zitat E. Ha, W. Liu, L. Wang, H.W. Man, L. Hu, S.C. Tsang, C.T. Chan, W.M. Kwok, L.Y. Lee, K.Y. Wong, Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. 7, 39411 (2017)CrossRef E. Ha, W. Liu, L. Wang, H.W. Man, L. Hu, S.C. Tsang, C.T. Chan, W.M. Kwok, L.Y. Lee, K.Y. Wong, Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. 7, 39411 (2017)CrossRef
40.
Zurück zum Zitat S. Das, K. Sa, I. Alam, P. Mahanandia, Synthesis of CZTS QDs decorated reduced graphene oxide. Mater. Lett. 232, 232–236 (2018)CrossRef S. Das, K. Sa, I. Alam, P. Mahanandia, Synthesis of CZTS QDs decorated reduced graphene oxide. Mater. Lett. 232, 232–236 (2018)CrossRef
41.
Zurück zum Zitat S.-J. Lin, J.-M. Ting, K.-C. Hsu, Y.-S. Fu, A composite photocatalyst based on hydrothermally-synthesized Cu2ZnSnS4 powders. Materials 11, 158 (2018)CrossRef S.-J. Lin, J.-M. Ting, K.-C. Hsu, Y.-S. Fu, A composite photocatalyst based on hydrothermally-synthesized Cu2ZnSnS4 powders. Materials 11, 158 (2018)CrossRef
42.
Zurück zum Zitat Y.C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, K.-J. Lin, Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO2 nanowire-web electrode. Sci. Rep. 7, 42524 (2017)CrossRef Y.C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, K.-J. Lin, Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO2 nanowire-web electrode. Sci. Rep. 7, 42524 (2017)CrossRef
43.
Zurück zum Zitat M.-S. Son, J.-E. Im, K.-K. Wang, S.-L. Oh, Y.-R. Kim, K.-H. Yoo, Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles. Appl. Phys. Lett. 96, 023115 (2010)CrossRef M.-S. Son, J.-E. Im, K.-K. Wang, S.-L. Oh, Y.-R. Kim, K.-H. Yoo, Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles. Appl. Phys. Lett. 96, 023115 (2010)CrossRef
44.
Zurück zum Zitat P.S. Archana, N. Pachauri, Z. Shan, S. Pan, A. Gupta, Plasmonic enhancement of photoactivity by gold nanoparticles embedded in hematite films. J. Phys. Chem. C 119, 15506–15516 (2015)CrossRef P.S. Archana, N. Pachauri, Z. Shan, S. Pan, A. Gupta, Plasmonic enhancement of photoactivity by gold nanoparticles embedded in hematite films. J. Phys. Chem. C 119, 15506–15516 (2015)CrossRef
45.
Zurück zum Zitat W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W.F. Pong, J.-W. Chiou, C.W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, J.-H. Guo, Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Phys. Rev. B 84, 165412 (2011)CrossRef W. Pao, C.-T. Wu, H.-M. Tsai, Y.-S. Liu, C.-L. Chang, W.F. Pong, J.-W. Chiou, C.W. Chen, M.-S. Hu, M.-W. Chu, L.-C. Chen, C.-H. Chen, K.-H. Chen, S.-B. Wang, S.-J. Chang, M.-H. Tsai, H.-J. Lin, J.-F. Lee, J.-H. Guo, Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Phys. Rev. B 84, 165412 (2011)CrossRef
46.
Zurück zum Zitat Q. Jiang, C. Ji, D.J. Riley, F. Xie, Boosting the efficiency of photoelectrolysis by the addition of non-noble plasmonic metals: Al & Cu. Nanomaterials 9, 1 (2019)CrossRef Q. Jiang, C. Ji, D.J. Riley, F. Xie, Boosting the efficiency of photoelectrolysis by the addition of non-noble plasmonic metals: Al & Cu. Nanomaterials 9, 1 (2019)CrossRef
47.
Zurück zum Zitat G. Faraone, R. Modi, S. Marom, A. Podest, M. Di Vece, Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles. Opt. Mater. 75, 204–210 (2018)CrossRef G. Faraone, R. Modi, S. Marom, A. Podest, M. Di Vece, Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles. Opt. Mater. 75, 204–210 (2018)CrossRef
48.
Zurück zum Zitat S. Dhara, P.K. Giri, On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J. Appl. Phys. 110, 124317 (2011)CrossRef S. Dhara, P.K. Giri, On the origin of enhanced photoconduction and photoluminescence from Au and Ti nanoparticles decorated aligned ZnO nanowire heterostructures. J. Appl. Phys. 110, 124317 (2011)CrossRef
49.
Zurück zum Zitat K. Patra, A.K. Guria, A. Dutta, A. Shit, N. Pradhan, Au–SnS hetero nanostructures: size of Au Matters. Chem. Mater. 26, 7194–7200 (2014)CrossRef K. Patra, A.K. Guria, A. Dutta, A. Shit, N. Pradhan, Au–SnS hetero nanostructures: size of Au Matters. Chem. Mater. 26, 7194–7200 (2014)CrossRef
50.
Zurück zum Zitat X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez, A. Cabot, Cu2ZnSnS4–Pt and Cu2ZnSnS4–Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRef X. Yu, A. Shavel, X. An, Z. Luo, M. Ibáñez, A. Cabot, Cu2ZnSnS4–Pt and Cu2ZnSnS4–Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014)CrossRef
51.
Zurück zum Zitat X. Zhang, X. Wu, A. Centeno, M.P. Ryan, N.M. Alford, D.J. Riley, F. Xie, Significant broadband photocurrent enhancement by Au-CZTS core–shell nanostructured photocathodes. Sci. Rep. 6, 23364 (2016)CrossRef X. Zhang, X. Wu, A. Centeno, M.P. Ryan, N.M. Alford, D.J. Riley, F. Xie, Significant broadband photocurrent enhancement by Au-CZTS core–shell nanostructured photocathodes. Sci. Rep. 6, 23364 (2016)CrossRef
52.
Zurück zum Zitat P.S. Dilsaver, M.D. Reichert, B.L. Hallmark, M.J. Thompson, J. Vela, Cu2ZnSnS4–Au heterostructures: toward greener chalcogenide-based photocatalysts. J. Phys. Chem. C 118, 21226–21234 (2014)CrossRef P.S. Dilsaver, M.D. Reichert, B.L. Hallmark, M.J. Thompson, J. Vela, Cu2ZnSnS4–Au heterostructures: toward greener chalcogenide-based photocatalysts. J. Phys. Chem. C 118, 21226–21234 (2014)CrossRef
53.
Zurück zum Zitat P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011)CrossRef P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 509, 7600–7606 (2011)CrossRef
54.
Zurück zum Zitat W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1, 3182–3186 (2013)CrossRef W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1, 3182–3186 (2013)CrossRef
55.
Zurück zum Zitat M. Hurtado, S.D. Cruz, R.A. Becerra, C. Calderón, P. Bartolo-Pérez, G. Gordillo, XPS analysis and structural characterization of CZTS thin films prepared using solution and vacuum based deposition techniques. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, 2014 M. Hurtado, S.D. Cruz, R.A. Becerra, C. Calderón, P. Bartolo-Pérez, G. Gordillo, XPS analysis and structural characterization of CZTS thin films prepared using solution and vacuum based deposition techniques. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, 2014
56.
Zurück zum Zitat Q. Wen, Y. Li, J.Yan,C. Wang, Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Mater. Lett. 140, 16 (2015)CrossRef Q. Wen, Y. Li, J.Yan,C. Wang, Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Mater. Lett. 140, 16 (2015)CrossRef
57.
Zurück zum Zitat F. López-Vergara, A. Galdámez, V. Manríquez, G. González, Crystal structure and Raman scattering characterization of Cu2Fe1–xCoxSnS4 chalcogenide compounds. Solid State Sci. 49, 54–60 (2015)CrossRef F. López-Vergara, A. Galdámez, V. Manríquez, G. González, Crystal structure and Raman scattering characterization of Cu2Fe1–xCoxSnS4 chalcogenide compounds. Solid State Sci. 49, 54–60 (2015)CrossRef
58.
Zurück zum Zitat O. Pal Singh, N. Muhunthan, K.S. Gour, R. Parmar, M. Dalai, P. Kulriya, S. Pillai, V.N. Singh, Effect of sputter deposited Zn precursor film thickness and annealing time on the properties of Cu2ZnSnS4 thin films deposited by sequential reactive sputtering of metal targets. Mater. Sci. Semicond. Process. 52, 38–45 (2016)CrossRef O. Pal Singh, N. Muhunthan, K.S. Gour, R. Parmar, M. Dalai, P. Kulriya, S. Pillai, V.N. Singh, Effect of sputter deposited Zn precursor film thickness and annealing time on the properties of Cu2ZnSnS4 thin films deposited by sequential reactive sputtering of metal targets. Mater. Sci. Semicond. Process. 52, 38–45 (2016)CrossRef
59.
Zurück zum Zitat F. Ruffino, V. Torrisi, G. Marletta, M. Grazia Grimaldi, Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res. Lett. 6, 112 (2011)CrossRef F. Ruffino, V. Torrisi, G. Marletta, M. Grazia Grimaldi, Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res. Lett. 6, 112 (2011)CrossRef
Metadaten
Titel
Improving the optoelectrical properties of Cu2ZnSnS4 using gold and graphene nano-fillers
verfasst von
Atul Kumar
Ajay D. Thakur
Publikationsdatum
27.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01175-6

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science: Materials in Electronics 9/2019 Zur Ausgabe

Neuer Inhalt