Skip to main content
Erschienen in: Quantum Information Processing 11/2018

01.11.2018

Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom

verfasst von: Hussein Abulkasim, Ahmed Farouk, Hanan Alsuqaih, Walaa Hamdan, Safwat Hamad, S. Ghose

Erschienen in: Quantum Information Processing | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, Wang and Ma (Quantum Inf Process 16(5):130, 2017) proposed two interesting quantum key agreement protocols with a single photon in both polarization and spatial-mode degrees of freedom. They claimed that the privacy of participants’ secret keys in the multiparty case is protected against dishonest participants. However, in this paper, we prove that two dishonest participants can deduce the secret key of an honest one using a fake sequence of single photons, without being detected. Also, we propose an additional security detection process to avoid the security loophole in their protocol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennet, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennet, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
2.
Zurück zum Zitat Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)ADSCrossRef Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)ADSCrossRef
3.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Zhao, N., Li, M., Chen, N., Zhu, C.-H., Pei, C.-X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)MathSciNetCrossRef Zhao, N., Li, M., Chen, N., Zhu, C.-H., Pei, C.-X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)MathSciNetCrossRef
5.
Zurück zum Zitat Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)ADSCrossRef
6.
Zurück zum Zitat Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42(11), 115303 (2009)ADSMathSciNetCrossRef Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42(11), 115303 (2009)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Sarvaghad-Moghaddam, M., Farouk, A., Abulkasim, H.: Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel (2018). arXiv preprint arXiv:1806.07061 Sarvaghad-Moghaddam, M., Farouk, A., Abulkasim, H.: Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel (2018). arXiv preprint arXiv:​1806.​07061
8.
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)ADSCrossRef
9.
Zurück zum Zitat Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2015)ADSCrossRef Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2015)ADSCrossRef
10.
Zurück zum Zitat Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. EPL (Europhys. Lett.) 87(6), 60008 (2009)ADSCrossRef Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. EPL (Europhys. Lett.) 87(6), 60008 (2009)ADSCrossRef
11.
Zurück zum Zitat Wei, H., Qiao-Yan, W., Heng-Yue, J., Su-Juan, Q., Fei, G.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)CrossRef Wei, H., Qiao-Yan, W., Heng-Yue, J., Su-Juan, Q., Fei, G.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)CrossRef
13.
Zurück zum Zitat Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Information 15(04), 1750023 (2017)ADSMathSciNetCrossRef Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Information 15(04), 1750023 (2017)ADSMathSciNetCrossRef
14.
Zurück zum Zitat Abulkasim, H., Hamad, S., El Bahnasy, K., Rida, S.Z.: Authenticated quantum secret sharing with quantum dialogue based on Bell states. Phys. Scr. 91(8), 085101 (2016)ADSCrossRef Abulkasim, H., Hamad, S., El Bahnasy, K., Rida, S.Z.: Authenticated quantum secret sharing with quantum dialogue based on Bell states. Phys. Scr. 91(8), 085101 (2016)ADSCrossRef
15.
Zurück zum Zitat Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93(2), 027001 (2018)ADSCrossRef Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93(2), 027001 (2018)ADSCrossRef
16.
Zurück zum Zitat Joy, D., Behera, B.K., Panigrahi, P.K.: In principle demonstration of quantum secret sharing in the IBM quantum computer (2018). arXiv preprint arXiv:1807.03219 Joy, D., Behera, B.K., Panigrahi, P.K.: In principle demonstration of quantum secret sharing in the IBM quantum computer (2018). arXiv preprint arXiv:​1807.​03219
17.
Zurück zum Zitat Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef
18.
Zurück zum Zitat Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetCrossRef Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetCrossRef
19.
Zurück zum Zitat Hung, S.-M., Hwang, S.-L., Hwang, T., Kao, S.-H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)ADSMathSciNetCrossRef Hung, S.-M., Hwang, S.-L., Hwang, T., Kao, S.-H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)ADSMathSciNetCrossRef
20.
Zurück zum Zitat Zhou, M.-K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)CrossRef Zhou, M.-K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)CrossRef
21.
Zurück zum Zitat Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef
22.
Zurück zum Zitat Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRef Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRef
23.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Qin, S.-J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)ADSCrossRef Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Qin, S.-J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)ADSCrossRef
24.
Zurück zum Zitat Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)ADSCrossRef Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)ADSCrossRef
25.
Zurück zum Zitat Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRef Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRef
26.
Zurück zum Zitat Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)ADSCrossRef Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)ADSCrossRef
27.
Zurück zum Zitat Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)MathSciNetCrossRef Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)CrossRef Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)CrossRef
29.
Zurück zum Zitat Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009) Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009)
30.
Zurück zum Zitat He, Y.-F., Ma, W.-P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14(01), 1650007 (2016)MathSciNetCrossRef He, Y.-F., Ma, W.-P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14(01), 1650007 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)ADSMathSciNetCrossRef Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)ADSMathSciNetCrossRef
32.
Zurück zum Zitat He, Y.-F., Ma, W.-P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)ADSMathSciNetCrossRef He, Y.-F., Ma, W.-P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)ADSMathSciNetCrossRef Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)ADSMathSciNetCrossRef
34.
Zurück zum Zitat Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)ADSMathSciNetCrossRef Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)ADSMathSciNetCrossRef
35.
Zurück zum Zitat Cai, B.-B., Guo, G.-D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56(4), 1039–1051 (2017)CrossRef Cai, B.-B., Guo, G.-D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56(4), 1039–1051 (2017)CrossRef
36.
Zurück zum Zitat Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)ADSCrossRef Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)ADSCrossRef
37.
Zurück zum Zitat Huang, W., Su, Q., Liu, B., He, Y.-H., Fan, F., Xu, B.-J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)ADSCrossRef Huang, W., Su, Q., Liu, B., He, Y.-H., Fan, F., Xu, B.-J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)ADSCrossRef
38.
Zurück zum Zitat Huang, W., Su, Q., Xu, B., Liu, B., Fan, F., Jia, H., Yang, Y.: Improved multiparty quantum key agreement in travelling mode. Sci. CHINA Phys. Mech. Astron. 59(12), 120311 (2016)CrossRef Huang, W., Su, Q., Xu, B., Liu, B., Fan, F., Jia, H., Yang, Y.: Improved multiparty quantum key agreement in travelling mode. Sci. CHINA Phys. Mech. Astron. 59(12), 120311 (2016)CrossRef
39.
Zurück zum Zitat Liu, B., Xiao, D., Jia, H.-Y., Liu, R.-Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process. 15(5), 2113–2124 (2016)ADSMathSciNetCrossRef Liu, B., Xiao, D., Jia, H.-Y., Liu, R.-Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process. 15(5), 2113–2124 (2016)ADSMathSciNetCrossRef
40.
Zurück zum Zitat Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)MathSciNetCrossRef Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)MathSciNetCrossRef
41.
Zurück zum Zitat Luo, Q.-B., Yang, G.-W., She, K., Niu, W.-N., Wang, Y.-Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)ADSMathSciNetCrossRef Luo, Q.-B., Yang, G.-W., She, K., Niu, W.-N., Wang, Y.-Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)ADSMathSciNetCrossRef
42.
Zurück zum Zitat Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)ADSMathSciNetCrossRef Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)ADSMathSciNetCrossRef
43.
Zurück zum Zitat Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)ADSMathSciNetCrossRef Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)ADSMathSciNetCrossRef
44.
Zurück zum Zitat Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)ADSMathSciNetCrossRef Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)ADSMathSciNetCrossRef
45.
Zurück zum Zitat Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)CrossRef Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)CrossRef
46.
Zurück zum Zitat Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16(7), 170 (2017)ADSMathSciNetCrossRef Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16(7), 170 (2017)ADSMathSciNetCrossRef
47.
Zurück zum Zitat Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRef Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRef
48.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)ADSMathSciNetCrossRef Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)ADSMathSciNetCrossRef
49.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRef Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRef
50.
Zurück zum Zitat Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16(5), 130 (2017)ADSMathSciNetCrossRef Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16(5), 130 (2017)ADSMathSciNetCrossRef
51.
Zurück zum Zitat Wang, T.-Y., Liu, Y.-Z., Wei, C.-Y., Cai, X.-Q., Ma, J.-F.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7(1), 2485 (2017)ADSCrossRef Wang, T.-Y., Liu, Y.-Z., Wei, C.-Y., Cai, X.-Q., Ma, J.-F.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7(1), 2485 (2017)ADSCrossRef
Metadaten
Titel
Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom
verfasst von
Hussein Abulkasim
Ahmed Farouk
Hanan Alsuqaih
Walaa Hamdan
Safwat Hamad
S. Ghose
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2091-7

Weitere Artikel der Ausgabe 11/2018

Quantum Information Processing 11/2018 Zur Ausgabe

Neuer Inhalt