Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2022

02.02.2022 | ORIGINAL ARTICLE

In-process material removal rate monitoring for abrasive belt grinding using multisensor fusion and 2D CNN algorithm

verfasst von: Nina Wang, Guangpeng Zhang, Lijuan Ren, Yongchang Li, Zhijian Yang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the abrasive belt grinding process, actual material removal is an important parameter that affects its accuracy. At present, for obtaining the actual material removal, offline measurements are required to establish the mathematical prediction model. To improve the accuracy and efficiency of abrasive belt machine grinding, this paper proposes a novel method for monitoring material removal using multiple sensors and a two-dimensional (2D) convolutional neural network (2D-CNN) learning algorithm. In this method, features of multiple types (color, texture, and shape) are extracted from vision signals, and that of multiple domains (time, frequency, and time–frequency domain) are extracted from sound and tactile signals. These features are constructed into a 2D feature matrix as the input model, and the 2D-CNN prediction model is established between the multisensor features and the material removal rate of the abrasive belt grinding process. An experimental dataset is used to train and verify the established model. The results show that the proposed method can identify that sensor signals are sensitive to the material removal rate. After optimizing and tuning the model parameters, the coefficient of determination of the prediction results is as high as 94.5% and the root mean square error is 0.017. Therefore, the proposed method can be employed for the prediction of material removal rate for different belt specifications and different grinding parameters. Compared to traditional machine learning methods, this method can yield better training results without feature selection and optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jourani A, Dursapt M, Hamdi H, Rech J, Zahouani H (2005) Effect of the belt grinding on the surface texture: Modeling of the contact and abrasive wear. Wear 259(7–12):1137–1143CrossRef Jourani A, Dursapt M, Hamdi H, Rech J, Zahouani H (2005) Effect of the belt grinding on the surface texture: Modeling of the contact and abrasive wear. Wear 259(7–12):1137–1143CrossRef
2.
Zurück zum Zitat Lv YJ, Peng Z, Qu C, Zhu DH (2020) An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model. Robot. Comput.-Integr. Manuf. 6:101978. Lv YJ, Peng Z, Qu C, Zhu DH (2020) An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model. Robot. Comput.-Integr. Manuf. 6:101978.
3.
Zurück zum Zitat Xiao GX, Huang Y (2017) Experimental research and modeling of life-cycle material removal in belt finishing for titanium alloy. J Manuf Process 30:255–267CrossRef Xiao GX, Huang Y (2017) Experimental research and modeling of life-cycle material removal in belt finishing for titanium alloy. J Manuf Process 30:255–267CrossRef
4.
Zurück zum Zitat Tian YB, Liu F, Wang Y, Wu H (2017) Development of portable power monitoring system and grinding analytical tool. J Manuf Process 27:188–197CrossRef Tian YB, Liu F, Wang Y, Wu H (2017) Development of portable power monitoring system and grinding analytical tool. J Manuf Process 27:188–197CrossRef
5.
Zurück zum Zitat Tian YB, Li LG, Fan S, Guo QJ, Cheng X (2020) A novel high-shear and low-pressure grinding method using specially developed abrasive tools. P I Mech Eng B-J Eng 235(1–2):095440542094910 Tian YB, Li LG, Fan S, Guo QJ, Cheng X (2020) A novel high-shear and low-pressure grinding method using specially developed abrasive tools. P I Mech Eng B-J Eng 235(1–2):095440542094910
6.
Zurück zum Zitat Pandiyan V, Tjahjowidodo T, Samy MP (2016) In-process surface roughness estimation model for compliant abrasive belt machining process. Procedia Cirp 46:254–257CrossRef Pandiyan V, Tjahjowidodo T, Samy MP (2016) In-process surface roughness estimation model for compliant abrasive belt machining process. Procedia Cirp 46:254–257CrossRef
7.
Zurück zum Zitat Khellouki A, Rech J, Zahouani H (2007) The effect of abrasive grain’s wear and contact conditions on surface texture in belt finishing. Wear 263(1–6):81–87CrossRef Khellouki A, Rech J, Zahouani H (2007) The effect of abrasive grain’s wear and contact conditions on surface texture in belt finishing. Wear 263(1–6):81–87CrossRef
8.
Zurück zum Zitat Fan WG, Wang WX, Wang JD, Zhang XL, Qian C, Ma TF (2021) Microscopic contact pressure and material removal modeling in rail grinding using abrasive belt. P I Mech Eng B-J Eng 235(1–2):3–12 Fan WG, Wang WX, Wang JD, Zhang XL, Qian C, Ma TF (2021) Microscopic contact pressure and material removal modeling in rail grinding using abrasive belt. P I Mech Eng B-J Eng 235(1–2):3–12
9.
Zurück zum Zitat Jamshidi H, Budak E (2020) An analytical grinding force model based on individual grit interaction. J. Mater. Process. Tech. 283:116700. Jamshidi H, Budak E (2020) An analytical grinding force model based on individual grit interaction. J. Mater. Process. Tech. 283:116700.
10.
Zurück zum Zitat Jamshidi H, Budak E (2021) On the prediction of surface burn and its thickness in grinding processes. CIRP Ann.–Manuf. Technol 70:285–288 Jamshidi H, Budak E (2021) On the prediction of surface burn and its thickness in grinding processes. CIRP Ann.–Manuf. Technol 70:285–288
11.
Zurück zum Zitat Jin XL, Zhang LC (2012) A statistical model for material removal prediction in polishing. Wear 274–275:203–211CrossRef Jin XL, Zhang LC (2012) A statistical model for material removal prediction in polishing. Wear 274–275:203–211CrossRef
12.
Zurück zum Zitat Pandiyan V, Caesarendra W, Tjahjowidodo T, Praveen G (2017) Predictive modelling and analysis of process parameters on material removal characteristics in abrasive belt grinding process. Appl Sci 7(363):2–17 Pandiyan V, Caesarendra W, Tjahjowidodo T, Praveen G (2017) Predictive modelling and analysis of process parameters on material removal characteristics in abrasive belt grinding process. Appl Sci 7(363):2–17
13.
Zurück zum Zitat Ren LJ, Zhang GP, Wang Y, Zhang Q, Wang F, Huang Y (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(2):2715–2726 Ren LJ, Zhang GP, Wang Y, Zhang Q, Wang F, Huang Y (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(2):2715–2726
14.
Zurück zum Zitat Ren LJ, Zhang GP, Wang QW (2019) Image-based prediction model for material removal rate of abrasive belt grinding. J Sci Instrum 40(12):127–134 Ren LJ, Zhang GP, Wang QW (2019) Image-based prediction model for material removal rate of abrasive belt grinding. J Sci Instrum 40(12):127–134
15.
Zurück zum Zitat Kurada S, Bradley C (1997) A review of machine vision sensors for tool condition monitoring. Comput Ind 34(1):55–72CrossRef Kurada S, Bradley C (1997) A review of machine vision sensors for tool condition monitoring. Comput Ind 34(1):55–72CrossRef
16.
Zurück zum Zitat Zhou YQ, Sun BT, Sun WF, Lei L (2020) Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J. In-tell. Manuf. 5–8. Zhou YQ, Sun BT, Sun WF, Lei L (2020) Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J. In-tell. Manuf. 5–8.
17.
Zurück zum Zitat Milfelner M, Cus F, Balic J (2005) An overview of data acquisition system for cutting force measuring and optimization in milling. J Mater Process Tech 164–165:1281–1288CrossRef Milfelner M, Cus F, Balic J (2005) An overview of data acquisition system for cutting force measuring and optimization in milling. J Mater Process Tech 164–165:1281–1288CrossRef
18.
Zurück zum Zitat Chen B, Chen X, Li B, He Z, Cao H, Cai G (2011) Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech Syst Signal Process 25:2526–2537CrossRef Chen B, Chen X, Li B, He Z, Cao H, Cai G (2011) Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech Syst Signal Process 25:2526–2537CrossRef
19.
Zurück zum Zitat Zhou J, Pang CK, Zhong Z, Lewis FL (2011) Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans Instrum Meas 60:547–559CrossRef Zhou J, Pang CK, Zhong Z, Lewis FL (2011) Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans Instrum Meas 60:547–559CrossRef
20.
Zurück zum Zitat Freyer BH, Heyns PS, Theron NJ (2014) Comparing orthogonal force and uni-directional strain component processing for tool condition monitoring. J In-tell Manuf 25:473–487 Freyer BH, Heyns PS, Theron NJ (2014) Comparing orthogonal force and uni-directional strain component processing for tool condition monitoring. J In-tell Manuf 25:473–487
21.
Zurück zum Zitat Sarhan AAD, Matsubara A (2015) Investigation about the characterization of ma-chine tool spindle stiffness for intelligent CNC end milling. Robot Comput-Integr Manuf 34:133–139CrossRef Sarhan AAD, Matsubara A (2015) Investigation about the characterization of ma-chine tool spindle stiffness for intelligent CNC end milling. Robot Comput-Integr Manuf 34:133–139CrossRef
22.
Zurück zum Zitat Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140–2152CrossRef Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140–2152CrossRef
23.
Zurück zum Zitat Wang NN, Zhang GP, Pang WJ, Ren LJ, Wang YP (2021) Novel monitoring method for material removal rate considering quantitative wear of abrasive belts based on LightGBM learning algorithm. Int J Adv Manuf Technol 114:13241–13253 Wang NN, Zhang GP, Pang WJ, Ren LJ, Wang YP (2021) Novel monitoring method for material removal rate considering quantitative wear of abrasive belts based on LightGBM learning algorithm. Int J Adv Manuf Technol 114:13241–13253
24.
Zurück zum Zitat Duwell EJ, Hong IS, Mcdonald WJ (1969) The effect of oxygen and water on the dynamics of chip formation during grinding. ASLE Trans 12(1):86–93CrossRef Duwell EJ, Hong IS, Mcdonald WJ (1969) The effect of oxygen and water on the dynamics of chip formation during grinding. ASLE Trans 12(1):86–93CrossRef
25.
Zurück zum Zitat Wang NN, Zhang GP, Ren LJ, Pang WJ, Wang YP (2021) Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm. J Manuf Process 66:281–292CrossRef Wang NN, Zhang GP, Ren LJ, Pang WJ, Wang YP (2021) Vision and sound fusion-based material removal rate monitoring for abrasive belt grinding using improved LightGBM algorithm. J Manuf Process 66:281–292CrossRef
26.
Zurück zum Zitat Lin H, Sun S (2019) An overview of multirate multisensor systems: modelling and estimation. Inform Fusion 52:335–343CrossRef Lin H, Sun S (2019) An overview of multirate multisensor systems: modelling and estimation. Inform Fusion 52:335–343CrossRef
27.
Zurück zum Zitat Zhang XQ, Chen HB, Xu JJ, Song XF, Wang JW, Chen XQ (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Tech 260:9–19CrossRef Zhang XQ, Chen HB, Xu JJ, Song XF, Wang JW, Chen XQ (2018) A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. J Mater Process Tech 260:9–19CrossRef
28.
Zurück zum Zitat Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH (2018) In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J Manuf Process 31:199–213CrossRef Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH (2018) In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. J Manuf Process 31:199–213CrossRef
29.
Zurück zum Zitat Cheng C, Li JY, Liu YM, Nie M, Wang WX (2020) An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters. J Manuf Process 50:80–89CrossRef Cheng C, Li JY, Liu YM, Nie M, Wang WX (2020) An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters. J Manuf Process 50:80–89CrossRef
30.
Zurück zum Zitat Gao KY, Chen HB, Zhang XQ, Ren XK, Chen JQ, Chen XQ (2019) A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int J Adv Manuf Technol 105:217–232CrossRef Gao KY, Chen HB, Zhang XQ, Ren XK, Chen JQ, Chen XQ (2019) A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int J Adv Manuf Technol 105:217–232CrossRef
31.
Zurück zum Zitat Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507MathSciNetCrossRef Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507MathSciNetCrossRef
32.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In 21th annual conference on neural information processing systems (NIPS). Lake Tahoe, USA, December 3–8. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In 21th annual conference on neural information processing systems (NIPS). Lake Tahoe, USA, December 3–8.
33.
Zurück zum Zitat Cheng C, Li JY, Liu YM, Nie M, Wang WX (2019) Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Comput Ind 106:1–13CrossRef Cheng C, Li JY, Liu YM, Nie M, Wang WX (2019) Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Comput Ind 106:1–13CrossRef
34.
Zurück zum Zitat Qi JD, Chen B, Zhang D (2020) Multi-information fusion-based belt condition monitoring in grinding process using the improved-Mahalanobis distance and convolutional neural networks. J Manuf Process 59:302–315 Qi JD, Chen B, Zhang D (2020) Multi-information fusion-based belt condition monitoring in grinding process using the improved-Mahalanobis distance and convolutional neural networks. J Manuf Process 59:302–315
35.
Zurück zum Zitat Huang Z, Zhu J, Lei J, Li X, Tian F (2020) Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J In-tell Manuf 31:953–966 Huang Z, Zhu J, Lei J, Li X, Tian F (2020) Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. J In-tell Manuf 31:953–966
36.
Zurück zum Zitat Rifai AP, Aoyama H, Tho NH, Dawal SZM, Masruroh NA (2020) Masruroh Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 161:107860. Rifai AP, Aoyama H, Tho NH, Dawal SZM, Masruroh NA (2020) Masruroh Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 161:107860.
37.
Zurück zum Zitat Gu KK, Lin Q, Wang WJ, Wang HY, Guo J, Liu QY et al (2015) Analysis on the effects of rotational speed of grinding stone on removal behavior of rail material. Wear 342–343:52–59CrossRef Gu KK, Lin Q, Wang WJ, Wang HY, Guo J, Liu QY et al (2015) Analysis on the effects of rotational speed of grinding stone on removal behavior of rail material. Wear 342–343:52–59CrossRef
38.
Zurück zum Zitat Zhou K, Ding HH, Wang WJ, Wang RX, Guo J, Liu QY (2019) Influence of grinding pressure on removal behaviours of rail material. Tribol Int 134:417–426 Zhou K, Ding HH, Wang WJ, Wang RX, Guo J, Liu QY (2019) Influence of grinding pressure on removal behaviours of rail material. Tribol Int 134:417–426
Metadaten
Titel
In-process material removal rate monitoring for abrasive belt grinding using multisensor fusion and 2D CNN algorithm
verfasst von
Nina Wang
Guangpeng Zhang
Lijuan Ren
Yongchang Li
Zhijian Yang
Publikationsdatum
02.02.2022
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2022
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08768-2

Weitere Artikel der Ausgabe 1-2/2022

The International Journal of Advanced Manufacturing Technology 1-2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.