Skip to main content
Erschienen in: Cellulose 6/2010

01.12.2010

In-situ growth of silica nanoparticles on cellulose and application of hierarchical structure in biomimetic hydrophobicity

verfasst von: Xianqiong Chen, Yuyang Liu, Haifeng Lu, Hengrui Yang, Xiang Zhou, John H. Xin

Erschienen in: Cellulose | Ausgabe 6/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monodispersed silica nanoparticles were prepared by a simple two-step method with hydrolysis and condensation. The materials were characterized by dynamic light scattering (DLS), SEM and TEM. Through in-situ growth of silica nanoparticles on cotton fabrics, a dual-scaled surface with nanoscaled roughness of silica and microscaled roughness of cellulose fiber was generated. After the modification of the low surface energy, the wettability of smooth silicon slide, silicon slide with nanoscaled roughness of silica particles, cotton fabric, and cotton fabric with silica particles was evaluated by the tests of the contact angle (CA) and the advancing and receding contact angle (ARCA). The cotton fabric with dual-scaled roughness exhibits a static CA of 149.8° for 4 μL water droplet and a hysteresis contact angle (HCA) of 1.8°. The results of CA and HCA show that microscaled roughness plays a more important role than nanoscaled roughness for the value of CA and HCA. The results in the hydrostatic pressure test and the rain test show the important contribution of nanoscaled roughness for hydrophobicity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677CrossRef Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677CrossRef
Zurück zum Zitat Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRef Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRef
Zurück zum Zitat Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P, Moulinet S (2006) Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74(2):299–305CrossRef Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P, Moulinet S (2006) Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett 74(2):299–305CrossRef
Zurück zum Zitat Baxter X, Cassie BD (1945) The water repellency of fabrics and a new water repellency test. J Text Inst 36:67CrossRef Baxter X, Cassie BD (1945) The water repellency of fabrics and a new water repellency test. J Text Inst 36:67CrossRef
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
Zurück zum Zitat Chen XQ, Liu YY, Qi KH, Zhou X, Xin JH (2007) A direct route to active silica nanoparticles. Nanosci Technol (Pts 1 and 2 121–123:65–68 Chen XQ, Liu YY, Qi KH, Zhou X, Xin JH (2007) A direct route to active silica nanoparticles. Nanosci Technol (Pts 1 and 2 121–123:65–68
Zurück zum Zitat Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480CrossRef Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480CrossRef
Zurück zum Zitat Gao XF, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):7036CrossRef Gao XF, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):7036CrossRef
Zurück zum Zitat Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703CrossRef Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703CrossRef
Zurück zum Zitat Hah HJ, Kim JS, Jeon BJ, Koo SM, Lee YE (2003) Simple preparation of monodisperse hollow silica particles without using templates. Chem Commun (14):1712–1713 Hah HJ, Kim JS, Jeon BJ, Koo SM, Lee YE (2003) Simple preparation of monodisperse hollow silica particles without using templates. Chem Commun (14):1712–1713
Zurück zum Zitat Hodak SK, Supasai T, Paosawatyanyong B, Kamlangkla K, Pavarajarn V (2008) Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. Appl Surf Sci 254(15):4744–4749CrossRef Hodak SK, Supasai T, Paosawatyanyong B, Kamlangkla K, Pavarajarn V (2008) Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. Appl Surf Sci 254(15):4744–4749CrossRef
Zurück zum Zitat Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23(26):13158–13163CrossRef Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23(26):13158–13163CrossRef
Zurück zum Zitat Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose (17):299–307 Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose (17):299–307
Zurück zum Zitat Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705CrossRef Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705CrossRef
Zurück zum Zitat Li SH, Xie HB, Zhang SB, Wang XH (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun (46):4857–4859 Li SH, Xie HB, Zhang SB, Wang XH (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun (46):4857–4859
Zurück zum Zitat Liu YY, Chen XQ, Xin JH (2006) Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology 17(13):3259–3263CrossRef Liu YY, Chen XQ, Xin JH (2006) Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach. Nanotechnology 17(13):3259–3263CrossRef
Zurück zum Zitat Liu YY, Wang RH, Lu HF, Li L, Kong YY, Qi KH, Xin JH (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17(11):1071–1078CrossRef Liu YY, Wang RH, Lu HF, Li L, Kong YY, Qi KH, Xin JH (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17(11):1071–1078CrossRef
Zurück zum Zitat Liu YY, Chen XQ, Xin JH (2008) Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir Biomim 3(4):046007CrossRef Liu YY, Chen XQ, Xin JH (2008) Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir Biomim 3(4):046007CrossRef
Zurück zum Zitat Liu YY, Wang XW, Qi KH, Xin JH (2008b) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460CrossRef Liu YY, Wang XW, Qi KH, Xin JH (2008b) Functionalization of cotton with carbon nanotubes. J Mater Chem 18(29):3454–3460CrossRef
Zurück zum Zitat Liu YY, Chen XQ, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19(31):5602–5611CrossRef Liu YY, Chen XQ, Xin JH (2009) Can superhydrophobic surfaces repel hot water? J Mater Chem 19(31):5602–5611CrossRef
Zurück zum Zitat Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677CrossRef Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677CrossRef
Zurück zum Zitat Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12(9):2125–2127CrossRef Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12(9):2125–2127CrossRef
Zurück zum Zitat Oner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20):7777–7782CrossRef Oner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16(20):7777–7782CrossRef
Zurück zum Zitat Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34CrossRef Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34CrossRef
Zurück zum Zitat Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213CrossRef Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213CrossRef
Zurück zum Zitat Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem Commun (43):4510–4512 Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem Commun (43):4510–4512
Zurück zum Zitat Roe B, Zhang XW (2009) Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes. Textile Res J 79(12):1115–1122CrossRef Roe B, Zhang XW (2009) Durable hydrophobic textile fabric finishing using silica nanoparticles and mixed silanes. Textile Res J 79(12):1115–1122CrossRef
Zurück zum Zitat Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100(50):19512–19517CrossRef Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100(50):19512–19517CrossRef
Zurück zum Zitat Wang HX, Fang J, Cheng T, Ding J, Qu LT, Dai LM, Wang XG, Lin T (2008) One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun (7):877–879 Wang HX, Fang J, Cheng T, Ding J, Qu LT, Dai LM, Wang XG, Lin T (2008) One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem Commun (7):877–879
Zurück zum Zitat Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRef Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRef
Zurück zum Zitat Werner O, Quan C, Turner C, Pettersson B, Wagberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198CrossRef Werner O, Quan C, Turner C, Pettersson B, Wagberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198CrossRef
Zurück zum Zitat Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(6):621–633CrossRef Zhang X, Shi F, Niu J, Jiang YG, Wang ZQ (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(6):621–633CrossRef
Metadaten
Titel
In-situ growth of silica nanoparticles on cellulose and application of hierarchical structure in biomimetic hydrophobicity
verfasst von
Xianqiong Chen
Yuyang Liu
Haifeng Lu
Hengrui Yang
Xiang Zhou
John H. Xin
Publikationsdatum
01.12.2010
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2010
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-010-9445-3

Weitere Artikel der Ausgabe 6/2010

Cellulose 6/2010 Zur Ausgabe