Skip to main content
Erschienen in: Cellulose 6/2010

01.12.2010

Cellulose nanofibers from curaua fibers

verfasst von: Ana Carolina Corrêa, Eliangela de Morais Teixeira, Luiz Antonio Pessan, Luiz Henrique Capparelli Mattoso

Erschienen in: Cellulose | Ausgabe 6/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
(101)−2θ = 14.7° for cellulose type I (Na5 fibers) and 2θ = 12.1° for cellulose type II (Na17.5 fibers);
\( \left( {10\bar{1}} \right) \)−2θ = 16.8° for cellulose type I (Na5 fibers) and 2θ = 20.0° for cellulose type II (Na17.5 fibers);
(002)−2θ = 21.9° for cellulose type I (Na5 fibers) and 2θ = 22.7° for cellulose type II (Na17.5 fibers).
 
Literatur
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technol 99:1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technol 99:1664–1671CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75–82CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75–82CrossRef
Zurück zum Zitat Borysiak S, Doczekalska B (2005) X-ray diffraction study of pine Wood treated with NaOH. Fibres Text East Eur 13(5):87–89 Borysiak S, Doczekalska B (2005) X-ray diffraction study of pine Wood treated with NaOH. Fibres Text East Eur 13(5):87–89
Zurück zum Zitat Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization. Fibres Text East Eur 11(5):104–106 Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization. Fibres Text East Eur 11(5):104–106
Zurück zum Zitat Chen HZ, Chen JZ, Liu J, Li ZH (1999) Studies on the steam explosion of wheat straw. I-Effects of the processing conditions for steam explosion of wheat straw and analysis of the process. J Cellulose Sci Technol 7(2):60–67 Chen HZ, Chen JZ, Liu J, Li ZH (1999) Studies on the steam explosion of wheat straw. I-Effects of the processing conditions for steam explosion of wheat straw and analysis of the process. J Cellulose Sci Technol 7(2):60–67
Zurück zum Zitat D’Almeida ALFS, Barreto DW, Calado V, D’Almeida JRM (2008) Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim 91(2):405–408CrossRef D’Almeida ALFS, Barreto DW, Calado V, D’Almeida JRM (2008) Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim 91(2):405–408CrossRef
Zurück zum Zitat Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330 Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330
Zurück zum Zitat Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567CrossRef Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567CrossRef
Zurück zum Zitat Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos Part A-Appl S 38:1811–1820CrossRef Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos Part A-Appl S 38:1811–1820CrossRef
Zurück zum Zitat Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. BioResources 3(3):929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. BioResources 3(3):929–980
Zurück zum Zitat Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468CrossRef Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468CrossRef
Zurück zum Zitat Leão AL, Caraschi JC, Tan IH (2000) Curaua fiber—A tropical natural fibers from amazon potencial and applications in composites. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural Polymers and Agrofibers Composites. São Carlos, Brazil, pp 257–272 Leão AL, Caraschi JC, Tan IH (2000) Curaua fiber—A tropical natural fibers from amazon potencial and applications in composites. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural Polymers and Agrofibers Composites. São Carlos, Brazil, pp 257–272
Zurück zum Zitat Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Comm 25:771–787CrossRef Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Comm 25:771–787CrossRef
Zurück zum Zitat Lindgren T, Edlund U, Iversen T (1995) A multivariate characterization of crystal transformations of cellulose. Cellulose 2:273–288CrossRef Lindgren T, Edlund U, Iversen T (1995) A multivariate characterization of crystal transformations of cellulose. Cellulose 2:273–288CrossRef
Zurück zum Zitat Monteiro SN, Aquino RCMP, Lopes FPD, Carvalho EA, D’Almeida JRM (2006) Comportamento Mecânico e Características estruturais de compósitos poliméricos reforçados com fibras contínuas e alinhadas de Curauá. Revista Matéria 11(3):197–203 Monteiro SN, Aquino RCMP, Lopes FPD, Carvalho EA, D’Almeida JRM (2006) Comportamento Mecânico e Características estruturais de compósitos poliméricos reforçados com fibras contínuas e alinhadas de Curauá. Revista Matéria 11(3):197–203
Zurück zum Zitat Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRef
Zurück zum Zitat O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef
Zurück zum Zitat Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef
Zurück zum Zitat Paula MP, Lacerda TM, Frollini E (2008) Sisal cellulose acetates obtained from heterogeneous reactions. Express Polymer Letters 2(6):423–428CrossRef Paula MP, Lacerda TM, Frollini E (2008) Sisal cellulose acetates obtained from heterogeneous reactions. Express Polymer Letters 2(6):423–428CrossRef
Zurück zum Zitat Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRef Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRef
Zurück zum Zitat Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRef
Zurück zum Zitat Silva RV, Aquino EMF (2008) Curaua fiber: a new alternative to polymeric composites. J Reinf Plast Comp 27(1):103–112CrossRef Silva RV, Aquino EMF (2008) Curaua fiber: a new alternative to polymeric composites. J Reinf Plast Comp 27(1):103–112CrossRef
Zurück zum Zitat Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32(3):661–671 Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32(3):661–671
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materias: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materias: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Souza SF, Leão AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their Nanocomposites. Mol Cryst Liq Cryst 522:42[342]–52[352]CrossRef Souza SF, Leão AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their Nanocomposites. Mol Cryst Liq Cryst 522:42[342]–52[352]CrossRef
Zurück zum Zitat Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian Curauá fibers. Compos Part A-Appl S 38:2227–2236CrossRef Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian Curauá fibers. Compos Part A-Appl S 38:2227–2236CrossRef
Zurück zum Zitat Trindade WG, Hoareau W, Megiatto JD, Razera IAT, Castellan A, Frollini E (2005) Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules 6:2485–2496CrossRef Trindade WG, Hoareau W, Megiatto JD, Razera IAT, Castellan A, Frollini E (2005) Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules 6:2485–2496CrossRef
Zurück zum Zitat Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRef Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRef
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
Zurück zum Zitat Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611CrossRef Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611CrossRef
Metadaten
Titel
Cellulose nanofibers from curaua fibers
verfasst von
Ana Carolina Corrêa
Eliangela de Morais Teixeira
Luiz Antonio Pessan
Luiz Henrique Capparelli Mattoso
Publikationsdatum
01.12.2010
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2010
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-010-9453-3

Weitere Artikel der Ausgabe 6/2010

Cellulose 6/2010 Zur Ausgabe