Skip to main content

2017 | OriginalPaper | Buchkapitel

9. In Situ Lorentz Microscopy and Electron Holography Magnetization Studies of Ferromagnetic Focused Electron Beam Induced Nanodeposits

verfasst von : César Magén, Luis A. Rodríguez, Luis E. Serrano-Ramón, Christophe Gatel, Etienne Snoeck, José M. De Teresa

Erschienen in: Magnetic Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantitative Lorentz microscopy and electron holography are applied to probe the local magnetic properties of ferromagnetic nanostructures. We show here the possibilities of these techniques for the mapping of the magnetization states of nanoscale ferromagnets grown by focused electron beam induced deposition (FEBID) and for the analysis of the magnetization processes by the in situ application of magnetic fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115(3):485–491CrossRef Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115(3):485–491CrossRef
2.
Zurück zum Zitat Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309(5741):1688–1692CrossRef Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309(5741):1688–1692CrossRef
3.
Zurück zum Zitat Bartolf H, Inderbitzin K, Gómez LB, Engel A, Schilling A (2010) Nanoscale fabrication by intrinsic suppression of proximity-electron exposures and general considerations for easy and effective top–down fabrication. J Micromech Microeng 20(12):125015CrossRef Bartolf H, Inderbitzin K, Gómez LB, Engel A, Schilling A (2010) Nanoscale fabrication by intrinsic suppression of proximity-electron exposures and general considerations for easy and effective top–down fabrication. J Micromech Microeng 20(12):125015CrossRef
4.
Zurück zum Zitat Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13(5):2053–2057CrossRef Biziere N, Gatel C, Lassalle-Balier R, Clochard MC, Wegrowe JE, Snoeck E (2013) Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder. Nano Lett 13(5):2053–2057CrossRef
5.
Zurück zum Zitat Boero G, Utke I, Bret T, Quack N, Todorova M, Mouaziz S, Kejik P, Brugger J, Popovic RS, Hoffmann P (2005) Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl Phys Lett 86(4):042503CrossRef Boero G, Utke I, Bret T, Quack N, Todorova M, Mouaziz S, Kejik P, Brugger J, Popovic RS, Hoffmann P (2005) Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl Phys Lett 86(4):042503CrossRef
6.
Zurück zum Zitat Botman A, Mulders JJL, Hagen CW (2009) Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37):372001CrossRef Botman A, Mulders JJL, Hagen CW (2009) Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37):372001CrossRef
7.
Zurück zum Zitat Brands M, Dumpich G (2005) Multiple switching fields and domain wall pinning in single Co nanowires. J Phys D Appl Phys 38(6):822–826CrossRef Brands M, Dumpich G (2005) Multiple switching fields and domain wall pinning in single Co nanowires. J Phys D Appl Phys 38(6):822–826CrossRef
8.
Zurück zum Zitat Brands M, Leven B, Dumpich G (2005) Influence of thickness and cap layer on the switching behavior of single Co nanowires. J Appl Phys 97(11):114311CrossRef Brands M, Leven B, Dumpich G (2005) Influence of thickness and cap layer on the switching behavior of single Co nanowires. J Appl Phys 97(11):114311CrossRef
9.
Zurück zum Zitat Brands M, Wieser R, Hassel C, Hinzke D, Dumpich G (2006) Reversal processes and domain wall pinning in polycrystalline Co-nanowires. Phys Rev B 74:174411CrossRef Brands M, Wieser R, Hassel C, Hinzke D, Dumpich G (2006) Reversal processes and domain wall pinning in polycrystalline Co-nanowires. Phys Rev B 74:174411CrossRef
10.
Zurück zum Zitat Cabrini S, Kawata S (eds) (2012) Nanofabrication handbook, 1st edn. CRC Press, Boca Raton, pp 1–546 Cabrini S, Kawata S (eds) (2012) Nanofabrication handbook, 1st edn. CRC Press, Boca Raton, pp 1–546
11.
Zurück zum Zitat Córdoba R, Fernández-Pacheco R, Fernández-Pacheco A, Gloter A, Magén C, Stéphan O, Ibarra MR, De Teresa JM (2011) Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res Lett 6(1):592CrossRef Córdoba R, Fernández-Pacheco R, Fernández-Pacheco A, Gloter A, Magén C, Stéphan O, Ibarra MR, De Teresa JM (2011) Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res Lett 6(1):592CrossRef
12.
Zurück zum Zitat De Graef M, Nuhfer N, McCartney M (1999) Phase contrast of spherical magnetic particles. J Microsc 194(1):84–94CrossRef De Graef M, Nuhfer N, McCartney M (1999) Phase contrast of spherical magnetic particles. J Microsc 194(1):84–94CrossRef
13.
Zurück zum Zitat De Teresa JM, Fernández-Pacheco A (2014) Present and future applications of magnetic nanostructures grown by FEBID. Appl Phys A 117(4):1645–1658CrossRef De Teresa JM, Fernández-Pacheco A (2014) Present and future applications of magnetic nanostructures grown by FEBID. Appl Phys A 117(4):1645–1658CrossRef
15.
Zurück zum Zitat Dumpich G, Krome TP, Hausmanns B (2002) Magnetoresistance of single Co nanowires. J Magn Magn Mater 248(2):241–247CrossRef Dumpich G, Krome TP, Hausmanns B (2002) Magnetoresistance of single Co nanowires. J Magn Magn Mater 248(2):241–247CrossRef
16.
Zurück zum Zitat Dunin-Borkowski RE, Feuerbacher M, Heggen M, Houben L, Kovács A, Luysberg M, Thust A, Tillmann K (2012) Advanced transmission electron microscopy techniques and applications. In: Lecture notes of the 43rd IFF spring school “Scattering methods for condensed matter research: towards novel applications at future sources”. Forschungszentrum, Jülich, pp 1–28 Dunin-Borkowski RE, Feuerbacher M, Heggen M, Houben L, Kovács A, Luysberg M, Thust A, Tillmann K (2012) Advanced transmission electron microscopy techniques and applications. In: Lecture notes of the 43rd IFF spring school “Scattering methods for condensed matter research: towards novel applications at future sources”. Forschungszentrum, Jülich, pp 1–28
17.
Zurück zum Zitat Dyck DV (1983) High-speed computation techniques for the simulation of high resolution electron micrographs. J Microsc 132(1):31–42CrossRef Dyck DV (1983) High-speed computation techniques for the simulation of high resolution electron micrographs. J Microsc 132(1):31–42CrossRef
18.
Zurück zum Zitat Dyck DV, Coene W (1987) A new procedure for wave function restoration in high resolution electron microscopy. Optik 3:125–128 Dyck DV, Coene W (1987) A new procedure for wave function restoration in high resolution electron microscopy. Optik 3:125–128
19.
Zurück zum Zitat Elsner H, Meyer H-G (2001) Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist. Microelectron Eng 57–58:291–296CrossRef Elsner H, Meyer H-G (2001) Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist. Microelectron Eng 57–58:291–296CrossRef
20.
Zurück zum Zitat Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42(5):055005CrossRef Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR (2009) Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42(5):055005CrossRef
21.
Zurück zum Zitat Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94(19):192509CrossRef Fernández-Pacheco A, De Teresa JM, Córdoba R, Ibarra MR, Petit D, Read DE, O’Brien L, Lewis ER, Zeng HT, Cowburn RP (2009) Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl Phys Lett 94(19):192509CrossRef
22.
Zurück zum Zitat Fernández-Pacheco A, De Teresa JM, Szkudlarek A, Córdoba R, Ibarra MR, Petit D, O’Brien L, Zeng HT, Lewis ER, Read DE, Cowburn RP (2009) Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20(47):475704CrossRef Fernández-Pacheco A, De Teresa JM, Szkudlarek A, Córdoba R, Ibarra MR, Petit D, O’Brien L, Zeng HT, Lewis ER, Read DE, Cowburn RP (2009) Magnetization reversal in individual cobalt micro- and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology 20(47):475704CrossRef
23.
Zurück zum Zitat Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee J, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492CrossRef Fernández-Pacheco A, Serrano-Ramón L, Michalik JM, Ibarra MR, De Teresa JM, O’Brien L, Petit D, Lee J, Cowburn RP (2013) Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep 3:1492CrossRef
24.
Zurück zum Zitat Gatel C, Snoeck E (2012) Magnetic mapping using electron holography. In: Claverie A (ed) Transmission electron microscopy in micro-nanoelectronics. ISTE-Wiley, London Gatel C, Snoeck E (2012) Magnetic mapping using electron holography. In: Claverie A (ed) Transmission electron microscopy in micro-nanoelectronics. ISTE-Wiley, London
25.
Zurück zum Zitat Gavagnin M, Wanzenboeck HD, Belić D, Bertagnolli E (2013) Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7(1):777–784CrossRef Gavagnin M, Wanzenboeck HD, Belić D, Bertagnolli E (2013) Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7(1):777–784CrossRef
26.
Zurück zum Zitat Gavagnin M, Wanzenboeck HD, Belic D, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Bertagnolli E (2014) Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys Status Solidi (a) 211(2):368–374CrossRef Gavagnin M, Wanzenboeck HD, Belic D, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Bertagnolli E (2014) Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys Status Solidi (a) 211(2):368–374CrossRef
27.
Zurück zum Zitat Gavagnin M, Wanzenboeck HD, Wachter S, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Stöger-Pollach M, Bertagnolli E (2014) Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl Mater Interfaces 6:20254–20260CrossRef Gavagnin M, Wanzenboeck HD, Wachter S, Shawrav MM, Persson A, Gunnarsson K, Svedlindh P, Stöger-Pollach M, Bertagnolli E (2014) Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl Mater Interfaces 6:20254–20260CrossRef
28.
Zurück zum Zitat Graef MD (2001) 2. Lorentz microscopy: theoretical basis and image simulations. Exp Methods Phys Sci 36:27–67CrossRef Graef MD (2001) 2. Lorentz microscopy: theoretical basis and image simulations. Exp Methods Phys Sci 36:27–67CrossRef
29.
Zurück zum Zitat Hausmanns B, Krome TP, Dumpich G (2003) Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. J Appl Phys 93(10):8095CrossRef Hausmanns B, Krome TP, Dumpich G (2003) Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. J Appl Phys 93(10):8095CrossRef
30.
Zurück zum Zitat Hawkes PW, Spence JCH (2007) In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New YorkCrossRef Hawkes PW, Spence JCH (2007) In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New YorkCrossRef
31.
Zurück zum Zitat Hempe E-M, Kläui M, Kasama T, Backes D, Junginger F, Krzyk S, Heyderman LJ, Dunin-Borkowski RE, Rüdiger U (2007) Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses. Phys Status Solidi (a) 204(12):3922–3928CrossRef Hempe E-M, Kläui M, Kasama T, Backes D, Junginger F, Krzyk S, Heyderman LJ, Dunin-Borkowski RE, Rüdiger U (2007) Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses. Phys Status Solidi (a) 204(12):3922–3928CrossRef
32.
Zurück zum Zitat Hopster H, Oepen HP (eds) (2005) Magnetic microscopy of nanostructures. Springer, Berlin/Heidelberg Hopster H, Oepen HP (eds) (2005) Magnetic microscopy of nanostructures. Springer, Berlin/Heidelberg
33.
Zurück zum Zitat Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G (2012) Focused electron beam induced deposition: a perspective. Beilstein J Nanotechnol 3:597–619CrossRef Huth M, Porrati F, Schwalb C, Winhold M, Sachser R, Dukic M, Adams J, Fantner G (2012) Focused electron beam induced deposition: a perspective. Beilstein J Nanotechnol 3:597–619CrossRef
34.
Zurück zum Zitat Jaafar M, Serrano-Ramón L, Iglesias-Freire O, Fernández-Pacheco A, Ibarra MR, De Teresa JM, Asenjo A (2011) Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res Lett 6(1):407CrossRef Jaafar M, Serrano-Ramón L, Iglesias-Freire O, Fernández-Pacheco A, Ibarra MR, De Teresa JM, Asenjo A (2011) Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res Lett 6(1):407CrossRef
35.
Zurück zum Zitat Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20(31):313001CrossRef Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20(31):313001CrossRef
36.
Zurück zum Zitat Kuch W (2006) Magnetic imaging. In: Beaurepaire E, Bulou H, Scheurer F, Kappler J-P (eds) Magnetism: a synchrotron radiation approach, vol 697. Springer, Berlin/Heidelberg, pp 275–320CrossRef Kuch W (2006) Magnetic imaging. In: Beaurepaire E, Bulou H, Scheurer F, Kappler J-P (eds) Magnetism: a synchrotron radiation approach, vol 697. Springer, Berlin/Heidelberg, pp 275–320CrossRef
37.
Zurück zum Zitat Lau YM, Chee PC, Thong JTL, Ng V (2002) Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J Vac Sci Technol A 20(4):1295–1302CrossRef Lau YM, Chee PC, Thong JTL, Ng V (2002) Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J Vac Sci Technol A 20(4):1295–1302CrossRef
38.
Zurück zum Zitat Lavrijsen R, Córdoba R, Schoenaker FJ, Ellis TH, Barcones B, Kohlhepp JT, Swagten HJM, Koopmans B, De Teresa JM, Magén C, Ibarra MR, Trompenaars P, Mulders JJL (2011) Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22(2):025302CrossRef Lavrijsen R, Córdoba R, Schoenaker FJ, Ellis TH, Barcones B, Kohlhepp JT, Swagten HJM, Koopmans B, De Teresa JM, Magén C, Ibarra MR, Trompenaars P, Mulders JJL (2011) Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22(2):025302CrossRef
39.
Zurück zum Zitat Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71(6):064411CrossRef Leven B, Dumpich G (2005) Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys Rev B 71(6):064411CrossRef
40.
Zurück zum Zitat Lichte H (1993) Parameters for high-resolution electron holography. Ultramicroscopy 51(1–4):15–20CrossRef Lichte H (1993) Parameters for high-resolution electron holography. Ultramicroscopy 51(1–4):15–20CrossRef
41.
Zurück zum Zitat Lichte H, Lehmann M (2008) Electron holography – basics and applications. Rep Prog Phys 71(1):016102CrossRef Lichte H, Lehmann M (2008) Electron holography – basics and applications. Rep Prog Phys 71(1):016102CrossRef
42.
Zurück zum Zitat Lopez-Diaz L, Aurelio D, Torres L, Martinez E, Hernandez-Lopez MA, Gomez J, Alejos O, Carpentieri M, Finocchio G, Consolo G (2012) Micromagnetic simulations using graphics processing units. J Phys D Appl Phys 45(32):323001CrossRef Lopez-Diaz L, Aurelio D, Torres L, Martinez E, Hernandez-Lopez MA, Gomez J, Alejos O, Carpentieri M, Finocchio G, Consolo G (2012) Micromagnetic simulations using graphics processing units. J Phys D Appl Phys 45(32):323001CrossRef
43.
Zurück zum Zitat Lukasczyk T, Schirmer M, Steinrück H-P, Marbach H (2008) Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6):841–846CrossRef Lukasczyk T, Schirmer M, Steinrück H-P, Marbach H (2008) Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4(6):841–846CrossRef
44.
Zurück zum Zitat Marín L, Rodríguez LA, Magén C, Snoeck E, Arras R, Lucas I, Morellón L, Algarabel PA, De Teresa JM, Ibarra MR (2015) Observation of the strain induced magnetic phase segregation in manganite thin films. Nano Lett 15(1):492–497CrossRef Marín L, Rodríguez LA, Magén C, Snoeck E, Arras R, Lucas I, Morellón L, Algarabel PA, De Teresa JM, Ibarra MR (2015) Observation of the strain induced magnetic phase segregation in manganite thin films. Nano Lett 15(1):492–497CrossRef
45.
Zurück zum Zitat McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33(5):4167–4169CrossRef McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33(5):4167–4169CrossRef
46.
Zurück zum Zitat Möllenstedt G, Düker H (1956) Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z Phys 145(3):377–397CrossRef Möllenstedt G, Düker H (1956) Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z Phys 145(3):377–397CrossRef
47.
Zurück zum Zitat Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: a refined phase diagram. J Magn Magn Mater 290–291:750–753CrossRef Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: a refined phase diagram. J Magn Magn Mater 290–291:750–753CrossRef
48.
Zurück zum Zitat Nuhfer N, Budruk A, De Graef M (2010) Aberration-corrected Lorentz microscopy. Microsc Microanal 16(S2):142–143CrossRef Nuhfer N, Budruk A, De Graef M (2010) Aberration-corrected Lorentz microscopy. Microsc Microanal 16(S2):142–143CrossRef
49.
Zurück zum Zitat Paganin D, Nugent KA (1998) Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80:2586CrossRef Paganin D, Nugent KA (1998) Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80:2586CrossRef
50.
Zurück zum Zitat Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science (New York, NY) 320(5873):190–194CrossRef Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science (New York, NY) 320(5873):190–194CrossRef
51.
Zurück zum Zitat Petit D, Jausovec A-V, Read D, Cowburn RP (2008) Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J Appl Phys 103(11):114307CrossRef Petit D, Jausovec A-V, Read D, Cowburn RP (2008) Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J Appl Phys 103(11):114307CrossRef
52.
Zurück zum Zitat Phatak C, Petford-Long AK, De Graef M (2010) Three-dimensional study of the vector potential of magnetic structures. Phys Rev Lett 104:253901CrossRef Phatak C, Petford-Long AK, De Graef M (2010) Three-dimensional study of the vector potential of magnetic structures. Phys Rev Lett 104:253901CrossRef
53.
Zurück zum Zitat Porrati F, Sachser R, Walz M-M, Vollnhals F, Steinrück H-P, Marbach H, Huth M (2011) Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J Phys D Appl Phys 44(42):425001CrossRef Porrati F, Sachser R, Walz M-M, Vollnhals F, Steinrück H-P, Marbach H, Huth M (2011) Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J Phys D Appl Phys 44(42):425001CrossRef
54.
Zurück zum Zitat Raptis I, Glezos N, Valamontes E, Zervas E, Argitis P (2001) Electron beam lithography simulation for high resolution and high-density patterns. Vacuum 62(2–3):263–271CrossRef Raptis I, Glezos N, Valamontes E, Zervas E, Argitis P (2001) Electron beam lithography simulation for high resolution and high-density patterns. Vacuum 62(2–3):263–271CrossRef
55.
Zurück zum Zitat Rodríguez LA, Magén C, Snoeck E, Gatel C, Marín L, Serrano-Ramón L, Prieto JL, Muñoz M, Algarabel PA, Morellon L, De Teresa JM, Ibarra MR (2013) Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography. Ultramicroscopy 134:144–154CrossRef Rodríguez LA, Magén C, Snoeck E, Gatel C, Marín L, Serrano-Ramón L, Prieto JL, Muñoz M, Algarabel PA, Morellon L, De Teresa JM, Ibarra MR (2013) Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography. Ultramicroscopy 134:144–154CrossRef
56.
Zurück zum Zitat Rodríguez LA, Magén C, Snoeck E, Serrano-Ramón L, Gatel C, Córdoba R, Martínez-Vecino E, Torres L, De Teresa JM, Ibarra MR (2013) Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl Phys Lett 102(2):022418CrossRef Rodríguez LA, Magén C, Snoeck E, Serrano-Ramón L, Gatel C, Córdoba R, Martínez-Vecino E, Torres L, De Teresa JM, Ibarra MR (2013) Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl Phys Lett 102(2):022418CrossRef
57.
Zurück zum Zitat Serrano-Ramón L, Córdoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10):7781–7787CrossRef Serrano-Ramón L, Córdoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, De Teresa JM (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5(10):7781–7787CrossRef
58.
Zurück zum Zitat Serrano-Ramón L, Fernández-Pacheco A, Córdoba R, Magén C, Rodríguez LA, Petit D, Cowburn RP, Ibarra MR, De Teresa JM (2013) Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24(34):345703CrossRef Serrano-Ramón L, Fernández-Pacheco A, Córdoba R, Magén C, Rodríguez LA, Petit D, Cowburn RP, Ibarra MR, De Teresa JM (2013) Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24(34):345703CrossRef
59.
Zurück zum Zitat Spence JCH (2003) High-resolution electron microscopy. Oxford University Press, Oxford Spence JCH (2003) High-resolution electron microscopy. Oxford University Press, Oxford
60.
Zurück zum Zitat Tanigaki T, Takahashi Y, Shimakura T, Akashi T, Tsuneta R, Sugawara A, Shindo D (2015) Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs. Nano Lett 15:1309–1314CrossRef Tanigaki T, Takahashi Y, Shimakura T, Akashi T, Tsuneta R, Sugawara A, Shindo D (2015) Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs. Nano Lett 15:1309–1314CrossRef
61.
Zurück zum Zitat Tonomura A (1992) Electron-holographic interference microscopy. Adv Phys 41(1):59–103CrossRef Tonomura A (1992) Electron-holographic interference microscopy. Adv Phys 41(1):59–103CrossRef
62.
Zurück zum Zitat Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol: Microelectron Nanometer Struct 26(4):1197CrossRef Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol: Microelectron Nanometer Struct 26(4):1197CrossRef
63.
Zurück zum Zitat Utke I, Cicoira F, Jaenchen G, Hoffmann P, Scandella L, Dwir B, Kapon E, Laub D, Buffat P, Xanthopoulos N, Mathieu HJ (2011) Focused electron beam induced deposition of high resolution magnetic scanning probe tips. MRS Proc 706:Z9.24.1 Utke I, Cicoira F, Jaenchen G, Hoffmann P, Scandella L, Dwir B, Kapon E, Laub D, Buffat P, Xanthopoulos N, Mathieu HJ (2011) Focused electron beam induced deposition of high resolution magnetic scanning probe tips. MRS Proc 706:Z9.24.1
64.
Zurück zum Zitat Van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. J Appl Phys 104(8):081301CrossRef Van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. J Appl Phys 104(8):081301CrossRef
65.
Zurück zum Zitat Van Dyck D, Op de Beeck M, Coene W (1993) A new approach to object wavefunction reconstruction in electron microscopy. Optik 3:103–107 Van Dyck D, Op de Beeck M, Coene W (1993) A new approach to object wavefunction reconstruction in electron microscopy. Optik 3:103–107
66.
Zurück zum Zitat Van Tendeloo G, Van Dyck D, Pennycook SJ (eds) (2012) Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Van Tendeloo G, Van Dyck D, Pennycook SJ (eds) (2012) Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
67.
Zurück zum Zitat Volkov VV, Zhu Y, De Graef M (2002) A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5):411–416CrossRef Volkov VV, Zhu Y, De Graef M (2002) A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5):411–416CrossRef
68.
Zurück zum Zitat Williams DB, Carter CB (2009) Transmission electron microscopy. A textbook for materials science, 2nd edn. Springer, New York, pp 1–779 Williams DB, Carter CB (2009) Transmission electron microscopy. A textbook for materials science, 2nd edn. Springer, New York, pp 1–779
69.
Zurück zum Zitat Wu H, Stern LA, Xia D, Ferranti D, Thompson B, Klein KL, Gonzalez CM, Rack PD (2013) Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J Mater Sci Mater Electron 25(2):587–595CrossRef Wu H, Stern LA, Xia D, Ferranti D, Thompson B, Klein KL, Gonzalez CM, Rack PD (2013) Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J Mater Sci Mater Electron 25(2):587–595CrossRef
70.
Zurück zum Zitat Xu P, Xia K, Gu C, Tang L, Yang H, Li J (2008) An all-metallic logic gate based on current-driven domain wall motion. Nat Nanotechnol 3(2):97–100CrossRef Xu P, Xia K, Gu C, Tang L, Yang H, Li J (2008) An all-metallic logic gate based on current-driven domain wall motion. Nat Nanotechnol 3(2):97–100CrossRef
71.
Zurück zum Zitat Yao N (ed) (2007) Focused ion beam systems: basics and applications. Cambridge University Press, Cambridge Yao N (ed) (2007) Focused ion beam systems: basics and applications. Cambridge University Press, Cambridge
72.
Zurück zum Zitat Zhu Y (2005) Magnetic phase imaging with transmission electron microscopy. In: Zhu Y (ed) Modern techniques for characterizing magnetic materials. Springer, New York, pp 267–326CrossRef Zhu Y (2005) Magnetic phase imaging with transmission electron microscopy. In: Zhu Y (ed) Modern techniques for characterizing magnetic materials. Springer, New York, pp 267–326CrossRef
73.
Zurück zum Zitat Ziese M, Semmelhack HC, Busch P (2002) Sign reversal of the magnetic anisotropy in La0.7A0.3MnO3 (A = Ca, Sr, Ba, □) films. J Magn Magn Mater 246(1–2):327–334CrossRef Ziese M, Semmelhack HC, Busch P (2002) Sign reversal of the magnetic anisotropy in La0.7A0.3MnO3 (A = Ca, Sr, Ba, □) films. J Magn Magn Mater 246(1–2):327–334CrossRef
74.
Zurück zum Zitat Zonnevylle AC, Heerkens CTH, Hagen CW, Kruit P (2014) Multi-electron-beam deflector array. Microelectron Eng 123:140–148CrossRef Zonnevylle AC, Heerkens CTH, Hagen CW, Kruit P (2014) Multi-electron-beam deflector array. Microelectron Eng 123:140–148CrossRef
Metadaten
Titel
In Situ Lorentz Microscopy and Electron Holography Magnetization Studies of Ferromagnetic Focused Electron Beam Induced Nanodeposits
verfasst von
César Magén
Luis A. Rodríguez
Luis E. Serrano-Ramón
Christophe Gatel
Etienne Snoeck
José M. De Teresa
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52780-1_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.