Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Characterization of Magnetic Hyperthermia in Magnetic Nanoparticles

verfasst von : Eva Natividad, Irene Andreu

Erschienen in: Magnetic Characterization Techniques for Nanomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Certain magnetic nanoparticles are able to generate heat through magnetic moment reversal processes under the action of an adequate alternating magnetic field. This ability, together with biocompatibility and nanosize of the particles, makes them promising materials for biomedical applications. Among the potential applications is magnetic hyperthermia, an oncological therapy expected to battle malignant tumors with minimal side effects by using localized heating. The success of the therapy requires, among others, accurate quantification of the released heat leading to the prediction of the temperature increase in and around the treatment area. This chapter is devoted to the recent advances in the determination of this heating ability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184CrossRef van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13(8):1173–1184CrossRef
4.
Zurück zum Zitat Gilchrist R, Meda R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 164(4):596–606CrossRef Gilchrist R, Meda R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 164(4):596–606CrossRef
6.
Zurück zum Zitat Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117(21):11405–11411CrossRef Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117(21):11405–11411CrossRef
7.
Zurück zum Zitat Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808CrossRef Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808CrossRef
8.
Zurück zum Zitat Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21(23):4573–4581CrossRef Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21(23):4573–4581CrossRef
9.
Zurück zum Zitat Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estrade S, Peiro F, Saghi Z, Midgley PA, Conde-Leboran I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652CrossRef Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estrade S, Peiro F, Saghi Z, Midgley PA, Conde-Leboran I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652CrossRef
10.
Zurück zum Zitat Noh S-h, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721CrossRef Noh S-h, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH, Lim Y, Shin J-S, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721CrossRef
11.
Zurück zum Zitat Andreu I, Natividad E, Ravagli C, Castro M, Baldi G (2014) Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Adv 4(55):28968–28977CrossRef Andreu I, Natividad E, Ravagli C, Castro M, Baldi G (2014) Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects. RSC Adv 4(55):28968–28977CrossRef
13.
Zurück zum Zitat Natividad E, Castro M, Mediano A (2008) Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl Phys Lett 92(9):093116CrossRef Natividad E, Castro M, Mediano A (2008) Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup. Appl Phys Lett 92(9):093116CrossRef
14.
Zurück zum Zitat Luong TT, Ha TP, Tran LD, Do MH, Mai TT, Pham NH, Phan HBT, Pham GHT, Hoang NMT, Nguyen QT, Nguyen PX (2011) Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf A 384(1–3):23–30CrossRef Luong TT, Ha TP, Tran LD, Do MH, Mai TT, Pham NH, Phan HBT, Pham GHT, Hoang NMT, Nguyen QT, Nguyen PX (2011) Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf A 384(1–3):23–30CrossRef
15.
Zurück zum Zitat Connord V, Mehdaoui B, Tan RP, Carrey J, Respaud M (2014) An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples – a useful setup for magnetic hyperthermia applications. Rev Sci Instrum 85(9):093904CrossRef Connord V, Mehdaoui B, Tan RP, Carrey J, Respaud M (2014) An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples – a useful setup for magnetic hyperthermia applications. Rev Sci Instrum 85(9):093904CrossRef
16.
Zurück zum Zitat Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 268(1–2):33–39CrossRef Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 268(1–2):33–39CrossRef
17.
Zurück zum Zitat Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26(15):2231–2238CrossRef Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26(15):2231–2238CrossRef
18.
Zurück zum Zitat Kasuya R, Kikuchi T, Mamiya H, Ioku K, Endo S, Nakamura A, Takai T, Balachandran J (2010) Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells. Phys Procedia 9:186–189CrossRef Kasuya R, Kikuchi T, Mamiya H, Ioku K, Endo S, Nakamura A, Takai T, Balachandran J (2010) Heat dissipation characteristics of magnetite nanoparticles and their application to macrophage cells. Phys Procedia 9:186–189CrossRef
19.
Zurück zum Zitat Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12(9):4722–4728CrossRef Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12(9):4722–4728CrossRef
20.
Zurück zum Zitat Jones SK, Winter JG (2001) Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol 46(2):385CrossRef Jones SK, Winter JG (2001) Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol 46(2):385CrossRef
21.
Zurück zum Zitat Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8):6279–6296CrossRef Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8):6279–6296CrossRef
22.
Zurück zum Zitat Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29(8):715–729CrossRef Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperthermia 29(8):715–729CrossRef
23.
Zurück zum Zitat Buschow KHJ, de Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, Plenum, New YorkCrossRef Buschow KHJ, de Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, Plenum, New YorkCrossRef
24.
Zurück zum Zitat Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRef
25.
Zurück zum Zitat Fiorillo F (2010) Measurements of magnetic materials. Metrologia 47(2):S114CrossRef Fiorillo F (2010) Measurements of magnetic materials. Metrologia 47(2):S114CrossRef
26.
Zurück zum Zitat McElfresh M (1994) Fundamentals of magnetism and magnetic measurements. Quantum Design, San Diego McElfresh M (1994) Fundamentals of magnetism and magnetic measurements. Quantum Design, San Diego
27.
Zurück zum Zitat Beković M, Trlep M, Jesenik M, Goričan V, Hamler A (2013) An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power. J Magn Magn Mater 331:264–268CrossRef Beković M, Trlep M, Jesenik M, Goričan V, Hamler A (2013) An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power. J Magn Magn Mater 331:264–268CrossRef
28.
Zurück zum Zitat Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109(8):083921CrossRef Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109(8):083921CrossRef
29.
Zurück zum Zitat Holman J (1996) Heat transfer, Mcgraw-Hill series in mechanical engineering. McGraw Hill, New York, 752 Holman J (1996) Heat transfer, Mcgraw-Hill series in mechanical engineering. McGraw Hill, New York, 752
30.
Zurück zum Zitat Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri J-C, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949CrossRef Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri J-C, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949CrossRef
31.
Zurück zum Zitat Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6(7):418–422CrossRef Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6(7):418–422CrossRef
32.
Zurück zum Zitat Taylor A, Krupskaya Y, Krämer K, Füssel S, Klingeler R, Büchner B, Wirth MP (2010) Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon 48(8):2327–2334CrossRef Taylor A, Krupskaya Y, Krämer K, Füssel S, Klingeler R, Büchner B, Wirth MP (2010) Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia. Carbon 48(8):2327–2334CrossRef
33.
Zurück zum Zitat Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan- MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065CrossRef Kim D-H, Nikles DE, Brazel CS (2010) Synthesis and characterization of multifunctional chitosan- MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3(7):4051–4065CrossRef
34.
Zurück zum Zitat Rovers SA, van der Poel LAM, Dietz CHJT, Noijen JJ, Hoogenboom R, Kemmere MF, Kopinga K, Keurentjes JTF (2009) Characterization and magnetic heating of commercial superparamagnetic iron oxide nanoparticles. J Phys Chem C 113(33):14638–14643CrossRef Rovers SA, van der Poel LAM, Dietz CHJT, Noijen JJ, Hoogenboom R, Kemmere MF, Kopinga K, Keurentjes JTF (2009) Characterization and magnetic heating of commercial superparamagnetic iron oxide nanoparticles. J Phys Chem C 113(33):14638–14643CrossRef
35.
Zurück zum Zitat Shah SA, Hashmi MU, Alam S (2011) Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer. Mater Sci Eng C 31(5):1010–1016CrossRef Shah SA, Hashmi MU, Alam S (2011) Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer. Mater Sci Eng C 31(5):1010–1016CrossRef
36.
Zurück zum Zitat Zhang L-Y, Gu H-C, Wang X-M (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311(1):228–233CrossRef Zhang L-Y, Gu H-C, Wang X-M (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Magn Magn Mater 311(1):228–233CrossRef
37.
Zurück zum Zitat Kobayashi H, Ueda K, Tomitaka A, Yamada T, Takemura Y (2011) Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn 47(10):4151–4154CrossRef Kobayashi H, Ueda K, Tomitaka A, Yamada T, Takemura Y (2011) Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn 47(10):4151–4154CrossRef
38.
Zurück zum Zitat Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys Condens Matter 18(38):S2935CrossRef Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys Condens Matter 18(38):S2935CrossRef
39.
Zurück zum Zitat Atsarkin VA, Generalov AA, Demidov VV, Mefed AE, Markelova MN, Gorbenko OY, Kaul AR, Roy EJ, Odintsov BM (2009) Critical RF losses in fine particles of La1 − xAgyMnO3 + δ: prospects for temperature-controlled hyperthermia. J Magn Magn Mater 321(19):3198–3202CrossRef Atsarkin VA, Generalov AA, Demidov VV, Mefed AE, Markelova MN, Gorbenko OY, Kaul AR, Roy EJ, Odintsov BM (2009) Critical RF losses in fine particles of La1 − xAgyMnO3 + δ: prospects for temperature-controlled hyperthermia. J Magn Magn Mater 321(19):3198–3202CrossRef
40.
Zurück zum Zitat Aono H, Ebara H, Senba R, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2012) High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling. J Magn Magn Mater 324(12):1985–1991CrossRef Aono H, Ebara H, Senba R, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2012) High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling. J Magn Magn Mater 324(12):1985–1991CrossRef
41.
Zurück zum Zitat Sharma M, Mantri S, Bahadur D (2012) Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia. J Magn Magn Mater 324(23):3975–3980CrossRef Sharma M, Mantri S, Bahadur D (2012) Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia. J Magn Magn Mater 324(23):3975–3980CrossRef
42.
Zurück zum Zitat Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF (2012) Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 111(12):123902CrossRef Verde EL, Landi GT, Gomes JA, Sousa MH, Bakuzis AF (2012) Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 111(12):123902CrossRef
43.
Zurück zum Zitat Comes Franchini M, Baldi G, Bonacchi D, Gentili D, Giudetti G, Lascialfari A, Corti M, Marmorato P, Ponti J, Micotti E, Guerrini U, Sironi L, Gelosa P, Ravagli C, Ricci A (2010) Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer. Small 6(3):366–370CrossRef Comes Franchini M, Baldi G, Bonacchi D, Gentili D, Giudetti G, Lascialfari A, Corti M, Marmorato P, Ponti J, Micotti E, Guerrini U, Sironi L, Gelosa P, Ravagli C, Ricci A (2010) Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer. Small 6(3):366–370CrossRef
44.
Zurück zum Zitat Asin L, Goya GF, Tres A, Ibarra MR (2013) Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis 4:e596CrossRef Asin L, Goya GF, Tres A, Ibarra MR (2013) Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis 4:e596CrossRef
45.
Zurück zum Zitat Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109 (12), Article 124904, p 8 Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109 (12), Article 124904, p 8
46.
Zurück zum Zitat Kline TL, Xu Y-H, Jing Y, Wang J-P (2009) Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321(10):1525–1528CrossRef Kline TL, Xu Y-H, Jing Y, Wang J-P (2009) Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321(10):1525–1528CrossRef
47.
Zurück zum Zitat Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43(47):474011CrossRef Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43(47):474011CrossRef
48.
Zurück zum Zitat Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111(7), Article 07B306, p 4 Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111(7), Article 07B306, p 4
49.
Zurück zum Zitat Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, Vaishnava P, Rablau C, Kahn D, Lavoie M, Garg VK, Oliveira AC (2009) Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 106(11), Article 113902, p 9 Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, Vaishnava P, Rablau C, Kahn D, Lavoie M, Garg VK, Oliveira AC (2009) Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 106(11), Article 113902, p 9
50.
Zurück zum Zitat Li CH, Hodgins P, Peterson GP (2011) Experimental study of fundamental mechanisms in inductive heating of ferromagnetic nanoparticles suspension (Fe3O4 Iron Oxide Ferrofluid). J Appl Phys 110(5):054303CrossRef Li CH, Hodgins P, Peterson GP (2011) Experimental study of fundamental mechanisms in inductive heating of ferromagnetic nanoparticles suspension (Fe3O4 Iron Oxide Ferrofluid). J Appl Phys 110(5):054303CrossRef
51.
Zurück zum Zitat Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914–4918CrossRef Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914–4918CrossRef
52.
Zurück zum Zitat Maity D, Chandrasekharan P, Pradhan P, Chuang K-H, Xue J-M, Feng S-S, Ding J (2011) Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem 21(38):14717–14724CrossRef Maity D, Chandrasekharan P, Pradhan P, Chuang K-H, Xue J-M, Feng S-S, Ding J (2011) Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem 21(38):14717–14724CrossRef
53.
Zurück zum Zitat Salas G, Camarero J, Cabrera D, Takacs H, Varela M, Ludwig R, Dähring H, Hilger I, Miranda R, Morales MdP, Teran FJ (2014) Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J Phys Chem C 118(34):19985–19994 Salas G, Camarero J, Cabrera D, Takacs H, Varela M, Ludwig R, Dähring H, Hilger I, Miranda R, Morales MdP, Teran FJ (2014) Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J Phys Chem C 118(34):19985–19994
54.
Zurück zum Zitat Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22(39):21065–21075CrossRef Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22(39):21065–21075CrossRef
55.
Zurück zum Zitat Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH (2013) Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 42(4):1249–1258CrossRef Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH (2013) Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 42(4):1249–1258CrossRef
56.
Zurück zum Zitat Shlyakhtin OA, Leontiev VG, Young-Jei O, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16(5):N35CrossRef Shlyakhtin OA, Leontiev VG, Young-Jei O, Kuznetsov AA (2007) New manganite-based mediators for self-controlled magnetic heating. Smart Mater Struct 16(5):N35CrossRef
57.
Zurück zum Zitat Izydorzak M, Skumiel A, Leonowicz M, Kaczmarek-Klinowska M, Pomogailo AD, Dzhardimalieva GI (2012) Thermophysical and magnetic properties of carbon beads containing cobalt nanocrystallites. Int J Thermophys 33(4):627–639CrossRef Izydorzak M, Skumiel A, Leonowicz M, Kaczmarek-Klinowska M, Pomogailo AD, Dzhardimalieva GI (2012) Thermophysical and magnetic properties of carbon beads containing cobalt nanocrystallites. Int J Thermophys 33(4):627–639CrossRef
58.
Zurück zum Zitat Zhao D-L, Zhang H-L, Zeng X-W, Xia Q-S, Tang J-T (2006) Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed Mater 1(4):198CrossRef Zhao D-L, Zhang H-L, Zeng X-W, Xia Q-S, Tang J-T (2006) Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed Mater 1(4):198CrossRef
59.
Zurück zum Zitat Zhixia L, Masakazu K, Norio A, Michihide M, Masahiro H, Masaaki D (2010) Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Biomed Mater 5(6):065010CrossRef Zhixia L, Masakazu K, Norio A, Michihide M, Masahiro H, Masaaki D (2010) Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Biomed Mater 5(6):065010CrossRef
60.
Zurück zum Zitat Le Renard P-E, Lortz R, Senatore C, Rapin J-P, Buchegger F, Petri-Fink A, Hofmann H, Doelker E, Jordan O (2011) Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia. J Magn Magn Mater 323(8):1054–1063CrossRef Le Renard P-E, Lortz R, Senatore C, Rapin J-P, Buchegger F, Petri-Fink A, Hofmann H, Doelker E, Jordan O (2011) Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia. J Magn Magn Mater 323(8):1054–1063CrossRef
61.
Zurück zum Zitat Chen S-W, Lai J-J, Chiang C-L, Chen C-L (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6), Article 064701, p 7 Chen S-W, Lai J-J, Chiang C-L, Chen C-L (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6), Article 064701, p 7
62.
Zurück zum Zitat Hilger I, Frühauf K, Andrä W, Hiergeist R, Hergt R, Kaiser WA (2002) Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad Radiol 9(2):198–202CrossRef Hilger I, Frühauf K, Andrä W, Hiergeist R, Hergt R, Kaiser WA (2002) Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad Radiol 9(2):198–202CrossRef
63.
Zurück zum Zitat Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF (2011) Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 22(20):205101CrossRef Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF (2011) Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 22(20):205101CrossRef
64.
Zurück zum Zitat Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122 Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122
65.
Zurück zum Zitat Fan J, Wang L (2011) Analytical theory of bioheat transport. J Appl Phys 109(10):104702CrossRef Fan J, Wang L (2011) Analytical theory of bioheat transport. J Appl Phys 109(10):104702CrossRef
66.
Zurück zum Zitat Golneshan AA, Lahonian M (2011) The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 27(3):266–274CrossRef Golneshan AA, Lahonian M (2011) The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 27(3):266–274CrossRef
67.
Zurück zum Zitat Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18(4):267–284CrossRef Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18(4):267–284CrossRef
68.
Zurück zum Zitat Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, Ivkov R (2012) Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 48(1):47–52CrossRef Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, Ivkov R (2012) Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn 48(1):47–52CrossRef
69.
Zurück zum Zitat Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46(2):552–555CrossRef
70.
Zurück zum Zitat Huang S, Wang SY, Gupta A, Borca-Tasciuc DA, Salon SJ (2012) On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 23(3):035701CrossRef Huang S, Wang SY, Gupta A, Borca-Tasciuc DA, Salon SJ (2012) On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas Sci Technol 23(3):035701CrossRef
71.
Zurück zum Zitat Pollert E, Knížek K, Maryško M, Kašpar P, Vasseur S, Duguet E (2007) New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 316(2):122–125CrossRef Pollert E, Knížek K, Maryško M, Kašpar P, Vasseur S, Duguet E (2007) New Tc-tuned magnetic nanoparticles for self-controlled hyperthermia. J Magn Magn Mater 316(2):122–125CrossRef
72.
Zurück zum Zitat Aono H, Watanabe Y, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2011) Effect of bead milling on heat generation ability in AC magnetic field of FeFe2O4 powder. Mater Chem Phys 129(3):1081–1088CrossRef Aono H, Watanabe Y, Naohara T, Maehara T, Hirazawa H, Watanabe Y (2011) Effect of bead milling on heat generation ability in AC magnetic field of FeFe2O4 powder. Mater Chem Phys 129(3):1081–1088CrossRef
73.
Zurück zum Zitat Gudoshnikov SA, Liubimov BY, Usov NA (2012) Hysteresis losses in a dense superparamagnetic nanoparticle assembly. AIP Adv 2(1):012143CrossRef Gudoshnikov SA, Liubimov BY, Usov NA (2012) Hysteresis losses in a dense superparamagnetic nanoparticle assembly. AIP Adv 2(1):012143CrossRef
74.
Zurück zum Zitat Garaio E, Collantes JM, Garcia JA, Plazaola F, Mornet S, Couillaud F, Sandre O (2014) A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. J Magn Magn Mater 368:432–437CrossRef Garaio E, Collantes JM, Garcia JA, Plazaola F, Mornet S, Couillaud F, Sandre O (2014) A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. J Magn Magn Mater 368:432–437CrossRef
75.
Zurück zum Zitat Ahrentorp F, Astalan AP, Jonasson C, Blomgren J, Qi B, Mefford OT, Yan M, Courtois J, Berret JF, Fresnais J, Sandre O, Dutz S, Müller R, Johansson C (2010) Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc 1311(1):213–223CrossRef Ahrentorp F, Astalan AP, Jonasson C, Blomgren J, Qi B, Mefford OT, Yan M, Courtois J, Berret JF, Fresnais J, Sandre O, Dutz S, Müller R, Johansson C (2010) Sensitive high frequency AC susceptometry in magnetic nanoparticle applications. AIP Conf Proc 1311(1):213–223CrossRef
76.
Zurück zum Zitat Nakamura K, Ueda K, Tomitaka A, Yamada T, Takemura Y (2013) Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on secondary particle size. IEEE Trans Magn 49(1):240–243CrossRef Nakamura K, Ueda K, Tomitaka A, Yamada T, Takemura Y (2013) Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on secondary particle size. IEEE Trans Magn 49(1):240–243CrossRef
77.
Zurück zum Zitat Oireachtaigh CM, Fannin PC (2008) Investigation of the non-linear loss properties of magnetic fluids subject to large alternating fields. J Magn Magn Mater 320(6):871–880CrossRef Oireachtaigh CM, Fannin PC (2008) Investigation of the non-linear loss properties of magnetic fluids subject to large alternating fields. J Magn Magn Mater 320(6):871–880CrossRef
78.
Zurück zum Zitat Cobos P, Maicas M, Sanz M, Aroca C (2011) High resolution system for nanoparticles hyperthermia efficiency evaluation. IEEE Trans Magn 47(10):2360–2363CrossRef Cobos P, Maicas M, Sanz M, Aroca C (2011) High resolution system for nanoparticles hyperthermia efficiency evaluation. IEEE Trans Magn 47(10):2360–2363CrossRef
79.
Zurück zum Zitat Gmelin E (1979) Modern low-temperature calorimetry. Thermochim Acta 29(1):1–39CrossRef Gmelin E (1979) Modern low-temperature calorimetry. Thermochim Acta 29(1):1–39CrossRef
80.
Zurück zum Zitat Schnelle W, Gmelin E (2002) Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim Acta 391(1–2):41–49CrossRef Schnelle W, Gmelin E (2002) Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim Acta 391(1–2):41–49CrossRef
81.
Zurück zum Zitat Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321(10):1497–1500CrossRef Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321(10):1497–1500CrossRef
82.
Zurück zum Zitat Wang S-Y, Huang S, Borca-Tasciuc D (2013) Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn 49(1):255–262CrossRef Wang S-Y, Huang S, Borca-Tasciuc D (2013) Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn 49(1):255–262CrossRef
83.
Zurück zum Zitat Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 29(8):828–834CrossRef Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 29(8):828–834CrossRef
84.
Zurück zum Zitat Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558CrossRef Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558CrossRef
85.
Zurück zum Zitat Koksharov YA (2009) Magnetism of nanoparticles: effects of size, shape, and interactions. In Gubin SP (ed) Magnetic nanoparticles. Wiley-VCH, Weinheim, Germany, pp 197–254 Koksharov YA (2009) Magnetism of nanoparticles: effects of size, shape, and interactions. In Gubin SP (ed) Magnetic nanoparticles. Wiley-VCH, Weinheim, Germany, pp 197–254
86.
Zurück zum Zitat O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley-VCH, Weinheim, Germany, p 768 O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley-VCH, Weinheim, Germany, p 768
87.
Zurück zum Zitat Raikher YL, Stepanov VI, Perzynski R (2004) Dynamic hysteresis of a superparamagnetic nanoparticle. Physica B 343(1–4):262–266CrossRef Raikher YL, Stepanov VI, Perzynski R (2004) Dynamic hysteresis of a superparamagnetic nanoparticle. Physica B 343(1–4):262–266CrossRef
88.
Zurück zum Zitat Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107(12):123909CrossRef Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107(12):123909CrossRef
89.
Zurück zum Zitat Landi GT, Bakuzis AF (2012) On the energy conversion efficiency in magnetic hyperthermia applications: a new perspective to analyze the departure from the linear regime. J Appl Phys 111(8):083915CrossRef Landi GT, Bakuzis AF (2012) On the energy conversion efficiency in magnetic hyperthermia applications: a new perspective to analyze the departure from the linear regime. J Appl Phys 111(8):083915CrossRef
90.
Zurück zum Zitat Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293(1):80–86CrossRef Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293(1):80–86CrossRef
91.
Zurück zum Zitat Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, Larionova J, Guérin C, Montero J-LG, Barragan-Montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C (2011) Water-dispersible sugar-coated iron oxide nanoparticles An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 133(27):10459–10472CrossRef Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, Larionova J, Guérin C, Montero J-LG, Barragan-Montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C (2011) Water-dispersible sugar-coated iron oxide nanoparticles An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 133(27):10459–10472CrossRef
92.
Zurück zum Zitat Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, García-Hernández M, Genovese A, Falqui A, Alloyeau D, Buonsanti R, Cozzoli PD, García MA, Gazeau F, Pellegrino T (2011) Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 23(18):4170–4180CrossRef Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, García-Hernández M, Genovese A, Falqui A, Alloyeau D, Buonsanti R, Cozzoli PD, García MA, Gazeau F, Pellegrino T (2011) Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 23(18):4170–4180CrossRef
93.
Zurück zum Zitat Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in ac magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48(4):1320–1323CrossRef Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in ac magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48(4):1320–1323CrossRef
94.
Zurück zum Zitat Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, Ricolleau C, Roux S, Wilhelm C, Gazeau F, Bazzi R (2012) Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 116(29):15702–15712CrossRef Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, Ricolleau C, Roux S, Wilhelm C, Gazeau F, Bazzi R (2012) Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 116(29):15702–15712CrossRef
95.
Zurück zum Zitat Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100A(3):728–737CrossRef Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100A(3):728–737CrossRef
96.
Zurück zum Zitat de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116(48):25602–25610CrossRef de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116(48):25602–25610CrossRef
97.
Zurück zum Zitat Chen S-W, Chiang C-L, Chen C-L (2012) The influence of nanoparticle size and external AC magnetic field on heating ability. Mater Lett 67(1):349–351CrossRef Chen S-W, Chiang C-L, Chen C-L (2012) The influence of nanoparticle size and external AC magnetic field on heating ability. Mater Lett 67(1):349–351CrossRef
98.
Zurück zum Zitat Lima EJ, De Biasi E, Vasquez Mansilla M, Saleta ME, Granada M, Troiani HE, Effenberger FB, Rossi LM, Rechenberg HR, Zysler RD (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46(4):045002CrossRef Lima EJ, De Biasi E, Vasquez Mansilla M, Saleta ME, Granada M, Troiani HE, Effenberger FB, Rossi LM, Rechenberg HR, Zysler RD (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46(4):045002CrossRef
99.
Zurück zum Zitat Chen R, Christiansen MG, Anikeeva P (2013) Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7(10):8990–9000CrossRef Chen R, Christiansen MG, Anikeeva P (2013) Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7(10):8990–9000CrossRef
100.
Zurück zum Zitat Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Respaud M, Gougeon M, Chaudret B (2010) Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. J Appl Phys 107(9):09A324CrossRef Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Respaud M, Gougeon M, Chaudret B (2010) Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. J Appl Phys 107(9):09A324CrossRef
101.
Zurück zum Zitat Ichiyanagi Y, Shigeoka D, Hiroki T, Mashino T, Kimura S, Tomitaka A, Ueda K, Takemura Y (2012) Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment. Thermochim Acta 532:123–126CrossRef Ichiyanagi Y, Shigeoka D, Hiroki T, Mashino T, Kimura S, Tomitaka A, Ueda K, Takemura Y (2012) Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment. Thermochim Acta 532:123–126CrossRef
102.
Zurück zum Zitat Józefczak A, Hornowski T, Skumiel A, Łabowski M, Timko M, Kopčanský P, Koneracká M, Szlaferek A, Kowalski W (2009) Effect of poly (ethylene glycol) coating on the magnetic and thermal properties of biocompatible magnetic liquids. J Magn Magn Mater 321(10):1505–1508CrossRef Józefczak A, Hornowski T, Skumiel A, Łabowski M, Timko M, Kopčanský P, Koneracká M, Szlaferek A, Kowalski W (2009) Effect of poly (ethylene glycol) coating on the magnetic and thermal properties of biocompatible magnetic liquids. J Magn Magn Mater 321(10):1505–1508CrossRef
103.
Zurück zum Zitat Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321(13):1947–1950CrossRef Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321(13):1947–1950CrossRef
104.
Zurück zum Zitat Skumiel A, Hornowski T, Józefczak A (2011) Heating characteristics of transformer oil-based magnetic fluids of different magnetic particle concentrations. Int J Thermophys 32(4):876–885CrossRef Skumiel A, Hornowski T, Józefczak A (2011) Heating characteristics of transformer oil-based magnetic fluids of different magnetic particle concentrations. Int J Thermophys 32(4):876–885CrossRef
105.
Zurück zum Zitat Barick KC, Hassan PA (2012) Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 369(1):96–102CrossRef Barick KC, Hassan PA (2012) Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 369(1):96–102CrossRef
106.
Zurück zum Zitat Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091CrossRef Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091CrossRef
107.
Zurück zum Zitat Diamantopoulos G, Basina G, Tzitzios V, Karakosta E, Fardis M, Jaglicic Z, Lazaridis N, Papavassiliou G (2013) Magnetic hyperthermia of laponite based ferrofluid. J Magn Magn Mater 336:71–74CrossRef Diamantopoulos G, Basina G, Tzitzios V, Karakosta E, Fardis M, Jaglicic Z, Lazaridis N, Papavassiliou G (2013) Magnetic hyperthermia of laponite based ferrofluid. J Magn Magn Mater 336:71–74CrossRef
108.
Zurück zum Zitat Gkanas EI (2013) In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem 11(7):1042–1054 Gkanas EI (2013) In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem 11(7):1042–1054
109.
Zurück zum Zitat Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63CrossRef Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63CrossRef
110.
Zurück zum Zitat Dong-Hyun K, Thai YT, Nikles DE, Brazel CS (2009) Heating of aqueous dispersions containing MnFe2O3 nanoparticles by radio-frequency magnetic field induction. IEEE Trans Magn 45(1):64–70CrossRef Dong-Hyun K, Thai YT, Nikles DE, Brazel CS (2009) Heating of aqueous dispersions containing MnFe2O3 nanoparticles by radio-frequency magnetic field induction. IEEE Trans Magn 45(1):64–70CrossRef
111.
Zurück zum Zitat Ibrahim EMM, Hampel S, Wolter AUB, Kath M, El-Gendy AA, Klingeler R, Täschner C, Khavrus VO, Gemming T, Leonhardt A, Büchner B (2012) Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. J Phys Chem C 116(42):22509–22517CrossRef Ibrahim EMM, Hampel S, Wolter AUB, Kath M, El-Gendy AA, Klingeler R, Täschner C, Khavrus VO, Gemming T, Leonhardt A, Büchner B (2012) Superparamagnetic FeCo and FeNi nanocomposites dispersed in submicrometer-sized C spheres. J Phys Chem C 116(42):22509–22517CrossRef
112.
Zurück zum Zitat Tannous C, Gieraltowski J (2008) The Stoner–Wohlfarth model of ferromagnetism. Eur J Phys 29(3):475CrossRef Tannous C, Gieraltowski J (2008) The Stoner–Wohlfarth model of ferromagnetism. Eur J Phys 29(3):475CrossRef
113.
Zurück zum Zitat Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A Math Phys Sci 240(826):599–642CrossRef Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A Math Phys Sci 240(826):599–642CrossRef
114.
Zurück zum Zitat Garcıa-Otero J, Garcıa-Bastida AJ, Rivas J (1998) Influence of temperature on the coercive field of non-interacting fine magnetic particles. J Magn Magn Mater 189(3):377–383CrossRef Garcıa-Otero J, Garcıa-Bastida AJ, Rivas J (1998) Influence of temperature on the coercive field of non-interacting fine magnetic particles. J Magn Magn Mater 189(3):377–383CrossRef
115.
Zurück zum Zitat Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRef Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754CrossRef
116.
Zurück zum Zitat Lu JJ, Huei Li H, Klik I (1994) Field orientations and sweep rate effects on magnetic switching of Stoner-Wohlfarth particles. J Appl Phys 76(3):1726–1732CrossRef Lu JJ, Huei Li H, Klik I (1994) Field orientations and sweep rate effects on magnetic switching of Stoner-Wohlfarth particles. J Appl Phys 76(3):1726–1732CrossRef
117.
Zurück zum Zitat Verde EL, Landi GT, Carrião MS, Drummond AL, Gomes JA, Vieira ED, Sousa MH, Bakuzis AF (2012) Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Adv 2(3):032120CrossRef Verde EL, Landi GT, Carrião MS, Drummond AL, Gomes JA, Vieira ED, Sousa MH, Bakuzis AF (2012) Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Adv 2(3):032120CrossRef
118.
Zurück zum Zitat Usov NA, Grebenshchikov YB (2009) Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 106(2):11CrossRef Usov NA, Grebenshchikov YB (2009) Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 106(2):11CrossRef
119.
Zurück zum Zitat Lacroix L-M, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105(2):023911CrossRef Lacroix L-M, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105(2):023911CrossRef
120.
Zurück zum Zitat Bae S, Sang Won L, Hirukawa A, Takemura Y, Youn Haeng J, Sang Geun L (2009) AC magnetic-field-induced heating and physical properties of ferrite nanoparticles for a hyperthermia agent in medicine. IEEE Trans Nano 8(1):86–94CrossRef Bae S, Sang Won L, Hirukawa A, Takemura Y, Youn Haeng J, Sang Geun L (2009) AC magnetic-field-induced heating and physical properties of ferrite nanoparticles for a hyperthermia agent in medicine. IEEE Trans Nano 8(1):86–94CrossRef
121.
Zurück zum Zitat Timko M, Dzarova A, Kovac J, Skumiel A, Józefczak A, Hornowski T, Gojżewski H, Zavisova V, Koneracka M, Sprincova A, Strbak O, Kopcansky P, Tomasovicova N (2009) Magnetic properties and heating effect in bacterial magnetic nanoparticles. J Magn Magn Mater 321(10):1521–1524CrossRef Timko M, Dzarova A, Kovac J, Skumiel A, Józefczak A, Hornowski T, Gojżewski H, Zavisova V, Koneracka M, Sprincova A, Strbak O, Kopcansky P, Tomasovicova N (2009) Magnetic properties and heating effect in bacterial magnetic nanoparticles. J Magn Magn Mater 321(10):1521–1524CrossRef
122.
Zurück zum Zitat Müller R, Dutz S, Habisreuther T, Zeisberger M (2011) Investigations on magnetic particles prepared by cyclic growth. J Magn Magn Mater 323(10):1223–1227CrossRef Müller R, Dutz S, Habisreuther T, Zeisberger M (2011) Investigations on magnetic particles prepared by cyclic growth. J Magn Magn Mater 323(10):1223–1227CrossRef
123.
Zurück zum Zitat Alphandéry E, Guyot F, Chebbi I (2012) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434(1–2):444–452CrossRef Alphandéry E, Guyot F, Chebbi I (2012) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434(1–2):444–452CrossRef
124.
Zurück zum Zitat Chen X, Klingeler R, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E (2012) Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces 4(4):2303–2309CrossRef Chen X, Klingeler R, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E (2012) Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces 4(4):2303–2309CrossRef
125.
Zurück zum Zitat Sotiriou GA, Visbal-Onufrak MA, Teleki A, Juan EJ, Hirt AM, Pratsinis SE, Rinaldi C (2013) Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem Mater 25(22):4603–4612CrossRef Sotiriou GA, Visbal-Onufrak MA, Teleki A, Juan EJ, Hirt AM, Pratsinis SE, Rinaldi C (2013) Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem Mater 25(22):4603–4612CrossRef
126.
Zurück zum Zitat Filippousi M, Altantzis T, Stefanou G, Betsiou M, Bikiaris DN, Angelakeris M, Pavlidou E, Zamboulis D, Van Tendeloo G (2013) Polyhedral iron oxide core-shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Adv 3(46):24367–24377CrossRef Filippousi M, Altantzis T, Stefanou G, Betsiou M, Bikiaris DN, Angelakeris M, Pavlidou E, Zamboulis D, Van Tendeloo G (2013) Polyhedral iron oxide core-shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Adv 3(46):24367–24377CrossRef
127.
Zurück zum Zitat Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322(19):L49–L52CrossRef Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322(19):L49–L52CrossRef
128.
Zurück zum Zitat Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, Castro M, Mediano A, Chen D-X, Sanchez A, Balcells L, Martínez B (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108(7):073918CrossRef Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, Castro M, Mediano A, Chen D-X, Sanchez A, Balcells L, Martínez B (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108(7):073918CrossRef
129.
Zurück zum Zitat El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47(12):2821–2828CrossRef El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47(12):2821–2828CrossRef
130.
Zurück zum Zitat Pollert E, Veverka P, Veverka M, Kaman O, Závěta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37(1):1–14CrossRef Pollert E, Veverka P, Veverka M, Kaman O, Závěta K, Vasseur S, Epherre R, Goglio G, Duguet E (2009) Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog Solid State Chem 37(1):1–14CrossRef
131.
Zurück zum Zitat Mehdaoui B, Carrey J, Stadler M, Cornejo A, Nayral C, Delpech F, Chaudret B, Respaud M (2012) Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles. Appl Phys Lett 100(5):052403CrossRef Mehdaoui B, Carrey J, Stadler M, Cornejo A, Nayral C, Delpech F, Chaudret B, Respaud M (2012) Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles. Appl Phys Lett 100(5):052403CrossRef
132.
Zurück zum Zitat Mehdaoui B, Tan RP, Meffre A, Carrey J, Lachaize S, Chaudret B, Respaud M (2013) Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys Rev B 87(17):174419CrossRef Mehdaoui B, Tan RP, Meffre A, Carrey J, Lachaize S, Chaudret B, Respaud M (2013) Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys Rev B 87(17):174419CrossRef
133.
Zurück zum Zitat Yang Y, Liu X, Yang Y, Xiao W, Li Z, Xue D, Li F, Ding J (2013) Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J Mater Chem C 1(16):2875–2885CrossRef Yang Y, Liu X, Yang Y, Xiao W, Li Z, Xue D, Li F, Ding J (2013) Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J Mater Chem C 1(16):2875–2885CrossRef
134.
Zurück zum Zitat Zélis PM, Pasquevich GA, Stewart SJ, van Raap MBF, Aphesteguy J, Bruvera IJ, Laborde C, Pianciola B, Jacobo S, Sánchez FH (2013) Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications. J Phys D Appl Phys 46(12):125006CrossRef Zélis PM, Pasquevich GA, Stewart SJ, van Raap MBF, Aphesteguy J, Bruvera IJ, Laborde C, Pianciola B, Jacobo S, Sánchez FH (2013) Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications. J Phys D Appl Phys 46(12):125006CrossRef
135.
Zurück zum Zitat Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31(1):70–75CrossRef Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31(1):70–75CrossRef
136.
Zurück zum Zitat Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1662CrossRef Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1662CrossRef
137.
Zurück zum Zitat Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60CrossRef Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81(1):53–60CrossRef
138.
Zurück zum Zitat Bekovic M, Ban I, Hamler A (2010) Assessment of magnetic fluid losses out of magnetic properties measurement. J Phys Conf Ser 200(7):072010CrossRef Bekovic M, Ban I, Hamler A (2010) Assessment of magnetic fluid losses out of magnetic properties measurement. J Phys Conf Ser 200(7):072010CrossRef
139.
Zurück zum Zitat Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98(24):243119CrossRef Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98(24):243119CrossRef
140.
Zurück zum Zitat Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, Mediano A (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4(13):3954–3962CrossRef Natividad E, Castro M, Goglio G, Andreu I, Epherre R, Duguet E, Mediano A (2012) New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. Nanoscale 4(13):3954–3962CrossRef
141.
Zurück zum Zitat Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA, Chaudhary P, McHenry ME (2009) Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys 105(7):07B324CrossRef Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA, Chaudhary P, McHenry ME (2009) Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys 105(7):07B324CrossRef
142.
Zurück zum Zitat Bertoni G, Torre B, Falqui A, Fragouli D, Athanassiou A, Cingolani R (2011) Nanochains formation of superparamagnetic nanoparticles. J Phys Chem C 115(15):7249–7254CrossRef Bertoni G, Torre B, Falqui A, Fragouli D, Athanassiou A, Cingolani R (2011) Nanochains formation of superparamagnetic nanoparticles. J Phys Chem C 115(15):7249–7254CrossRef
143.
Zurück zum Zitat Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Same magnetic nanoparticles, different heating behavior: influence of the arrangement and dispersive medium. J Magn Magn Mater 380:341–346CrossRef Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Same magnetic nanoparticles, different heating behavior: influence of the arrangement and dispersive medium. J Magn Magn Mater 380:341–346CrossRef
144.
Zurück zum Zitat Chamberlin RV, Hemberger J, Loidl A, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Percolation, relaxation halt, and retarded van der Waals interaction in dilute systems of iron nanoparticles. Phys Rev B 66(17):172403CrossRef Chamberlin RV, Hemberger J, Loidl A, Humfeld KD, Farrell D, Yamamuro S, Ijiri Y, Majetich SA (2002) Percolation, relaxation halt, and retarded van der Waals interaction in dilute systems of iron nanoparticles. Phys Rev B 66(17):172403CrossRef
145.
Zurück zum Zitat Fortin J-P, Gazeau F, Wilhelm C (2008) Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 37(2):223–228CrossRef Fortin J-P, Gazeau F, Wilhelm C (2008) Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 37(2):223–228CrossRef
146.
Zurück zum Zitat Dormann JL, Bessais L, Fiorani D (1988) A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J Phys C 21(10):2015CrossRef Dormann JL, Bessais L, Fiorani D (1988) A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J Phys C 21(10):2015CrossRef
147.
Zurück zum Zitat Dormann JL, Fiorani D, Tronc E (1999) On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater 202(1):251–267CrossRef Dormann JL, Fiorani D, Tronc E (1999) On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J Magn Magn Mater 202(1):251–267CrossRef
148.
Zurück zum Zitat Mørup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72(20):3278–3281CrossRef Mørup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72(20):3278–3281CrossRef
149.
Zurück zum Zitat Hansen MF, Mørup S (1998) Models for the dynamics of interacting magnetic nanoparticles. J Magn Magn Mater 184(3):L262–L274CrossRef Hansen MF, Mørup S (1998) Models for the dynamics of interacting magnetic nanoparticles. J Magn Magn Mater 184(3):L262–L274CrossRef
150.
Zurück zum Zitat Déjardin P-M (2011) Magnetic relaxation of a system of superparamagnetic particles weakly coupled by dipole-dipole interactions. J Appl Phys 110(11):113921CrossRef Déjardin P-M (2011) Magnetic relaxation of a system of superparamagnetic particles weakly coupled by dipole-dipole interactions. J Appl Phys 110(11):113921CrossRef
151.
Zurück zum Zitat Shtrikman S, Wohlfarth EP (1981) The theory of the Vogel-Fulcher law of spin glasses. Phys Lett A 85(8–9):467–470CrossRef Shtrikman S, Wohlfarth EP (1981) The theory of the Vogel-Fulcher law of spin glasses. Phys Lett A 85(8–9):467–470CrossRef
152.
Zurück zum Zitat Landi GT (2013) The random dipolar-field approximation for systems of interacting magnetic particles. J Appl Phys 113(16):163908CrossRef Landi GT (2013) The random dipolar-field approximation for systems of interacting magnetic particles. J Appl Phys 113(16):163908CrossRef
153.
Zurück zum Zitat Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89(1):014403CrossRef Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89(1):014403CrossRef
154.
Zurück zum Zitat Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114(11):4916–4922CrossRef Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114(11):4916–4922CrossRef
155.
Zurück zum Zitat Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3:2887CrossRef Branquinho LC, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3:2887CrossRef
156.
Zurück zum Zitat Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MdP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118(11):5927–5934 Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MdP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118(11):5927–5934
157.
Zurück zum Zitat Tan RP, Carrey J, Respaud M (2014) Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys Rev B 90(21):214421CrossRef Tan RP, Carrey J, Respaud M (2014) Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys Rev B 90(21):214421CrossRef
158.
Zurück zum Zitat Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 85(4):045435CrossRef Haase C, Nowak U (2012) Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles. Phys Rev B 85(4):045435CrossRef
159.
Zurück zum Zitat Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia. ACS Nano 9(2):1408–1419CrossRef Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia. ACS Nano 9(2):1408–1419CrossRef
Metadaten
Titel
Characterization of Magnetic Hyperthermia in Magnetic Nanoparticles
verfasst von
Eva Natividad
Irene Andreu
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-52780-1_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.