Skip to main content
Erschienen in: Journal of Materials Science 4/2019

31.10.2018 | Computation

In situ observation and phase-field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile

verfasst von: Shan Shang, Zhiqiang Han

Erschienen in: Journal of Materials Science | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of pressure rate on dendritic growth kinetics in solidification of succinonitrile was studied via in situ observation based on a novel apparatus established in our previous work and using phase-field modeling where a pressure term associated with pressure rate was introduced. The experimental and simulation results revealed that dendrites grew much faster at higher pressure rate, resulting in dendrites characterized by more developed secondary arms and larger secondary dendrite arm spacing (SDAS), while dendrites growing at lower pressure rate was more cellular-like with small secondary arms. Higher pressure rate facilitated the competitive growth of dendrites, which led to fewer but larger dominate primary dendrites and larger primary dendrite arm spacing (PDAS) in the final microstructure. The cellular-to-dendrite transition (CDT) was more advanced at higher pressure rate, and it was demonstrated that it was the higher pressure rate not the high value of pressure that motivated CDT, via elevating effective undercooling and thus growth velocity at CDT moment. Furthermore, the growth kinetics was analyzed quantitatively, and the variation of tip velocity at different pressure rates was consistent with that of the corresponding undercooling induced by pressure and thermal condition. Moreover, the slope of growth and re-melting velocity—the tip acceleration—increased with pressure-rising rate and pressure-declining rate, respectively, even in a complicated periodic pattern, which was qualitatively consistent with the theoretical relationship of tip acceleration and pressure rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sachdeva D, Tiwari S, Sundarraj S, Luo AA (2010) Microstructure and corrosion characterization of squeeze cast AM50 magnesium alloys. Metall Mater Trans B 41:1375–1383CrossRef Sachdeva D, Tiwari S, Sundarraj S, Luo AA (2010) Microstructure and corrosion characterization of squeeze cast AM50 magnesium alloys. Metall Mater Trans B 41:1375–1383CrossRef
2.
Zurück zum Zitat Masoumi M, Hu H (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater Sci Eng A 528:3589–3593CrossRef Masoumi M, Hu H (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater Sci Eng A 528:3589–3593CrossRef
3.
Zurück zum Zitat Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9CrossRef Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9CrossRef
4.
Zurück zum Zitat Han Z, Pan H, Li Y, Luo AA, Sachdev AK (2015) Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B 46:328–336CrossRef Han Z, Pan H, Li Y, Luo AA, Sachdev AK (2015) Study on pressurized solidification behavior and microstructure characteristics of squeeze casting magnesium alloy AZ91D. Metall Mater Trans B 46:328–336CrossRef
5.
Zurück zum Zitat Xu R (2005) The effect of high pressure on solidification microstructure of Al–Ni–Y alloy. Mater Lett 59:2818–2820CrossRef Xu R (2005) The effect of high pressure on solidification microstructure of Al–Ni–Y alloy. Mater Lett 59:2818–2820CrossRef
6.
Zurück zum Zitat Sobczak JJ, Drenchev L, Asthana R (2012) Effect of pressure on solidification of metallic materials. Int J Cast Metal Res 25:1–14CrossRef Sobczak JJ, Drenchev L, Asthana R (2012) Effect of pressure on solidification of metallic materials. Int J Cast Metal Res 25:1–14CrossRef
7.
Zurück zum Zitat Jie J, Zou C, Brosh E, Wang H, Wei Z, Li T (2013) Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures. J Alloy Compd 578:394–404CrossRef Jie J, Zou C, Brosh E, Wang H, Wei Z, Li T (2013) Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures. J Alloy Compd 578:394–404CrossRef
8.
Zurück zum Zitat Pan H, Han Z, Liu B (2016) Study on dendritic growth in pressurized solidification of Mg–Al alloy using phase field simulation. J Mater Sci Technol 32:68–75CrossRef Pan H, Han Z, Liu B (2016) Study on dendritic growth in pressurized solidification of Mg–Al alloy using phase field simulation. J Mater Sci Technol 32:68–75CrossRef
9.
Zurück zum Zitat Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (1999) Dendrites regularized by spatially homogeneous time-periodic forcing. Phys Rev Lett 83:2853–2856CrossRef Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (1999) Dendrites regularized by spatially homogeneous time-periodic forcing. Phys Rev Lett 83:2853–2856CrossRef
10.
Zurück zum Zitat Shang S, Guo Z, Han Z (2016) On the kinetics of dendritic sidebranching: a three dimensional phase field study. J Appl Phys 119:164305CrossRef Shang S, Guo Z, Han Z (2016) On the kinetics of dendritic sidebranching: a three dimensional phase field study. J Appl Phys 119:164305CrossRef
11.
Zurück zum Zitat Shang S, Han Z, Sun W, Luo AA (2017) A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 136:264–270CrossRef Shang S, Han Z, Sun W, Luo AA (2017) A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 136:264–270CrossRef
12.
Zurück zum Zitat Han Z, Huang X, Luo AA, Sachdev AK, Liu B (2012) A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scr Mater 66:215–218CrossRef Han Z, Huang X, Luo AA, Sachdev AK, Liu B (2012) A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scr Mater 66:215–218CrossRef
13.
Zurück zum Zitat Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (2000) Regular dendritic patterns induced by nonlocal time-periodic forcing. Phys Rev E 62:7817–7827CrossRef Börzsönyi T, Tóth-Katona T, Buka Á, Gránásy L (2000) Regular dendritic patterns induced by nonlocal time-periodic forcing. Phys Rev E 62:7817–7827CrossRef
14.
Zurück zum Zitat Wang F, Ma Q, Meng W, Han Z (2017) Experimental study on the heat transfer behavior and contact pressure at the casting-mold interface in squeeze casting of aluminum alloy. Int J Heat Mass Tran 112:1032–1043CrossRef Wang F, Ma Q, Meng W, Han Z (2017) Experimental study on the heat transfer behavior and contact pressure at the casting-mold interface in squeeze casting of aluminum alloy. Int J Heat Mass Tran 112:1032–1043CrossRef
15.
Zurück zum Zitat Trivedi R, Somboonsuk K (1985) Pattern formation during the directional solidification of binary systems. Acta Metall 33:1061–1068CrossRef Trivedi R, Somboonsuk K (1985) Pattern formation during the directional solidification of binary systems. Acta Metall 33:1061–1068CrossRef
16.
Zurück zum Zitat Jackson KA, Hunt JD (1965) Transparent compounds that freeze like metals. Acta Metall 13:1212–1215CrossRef Jackson KA, Hunt JD (1965) Transparent compounds that freeze like metals. Acta Metall 13:1212–1215CrossRef
17.
Zurück zum Zitat Cummins HZ, Qian XW (1990) Dendritic sidebranching initiation by a localized heat pulse. Phys Rev Lett 64:3038–3041CrossRef Cummins HZ, Qian XW (1990) Dendritic sidebranching initiation by a localized heat pulse. Phys Rev Lett 64:3038–3041CrossRef
18.
Zurück zum Zitat Farup I, Drezet JM, Rappaz M (2001) In situ observation of hot tearing formation in succinonitrile–acetone. Acta Mater 49:1261–1269CrossRef Farup I, Drezet JM, Rappaz M (2001) In situ observation of hot tearing formation in succinonitrile–acetone. Acta Mater 49:1261–1269CrossRef
19.
Zurück zum Zitat Koss MB, LaCombe JC, Tennenhouse LA, Glicksman ME, Winsa EA (1999) Dendritic growth tip velocities and radii of curvature in microgravity. Metall Mater Trans A 30:3177–3190CrossRef Koss MB, LaCombe JC, Tennenhouse LA, Glicksman ME, Winsa EA (1999) Dendritic growth tip velocities and radii of curvature in microgravity. Metall Mater Trans A 30:3177–3190CrossRef
20.
Zurück zum Zitat Reinhart G, Buffet A, Nguyen-Thi H, Billia B, Jung H, Mangelinck-Noël N, Bergeon N, Schenk T, Härtwig J, Baruchel J (2008) In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 wt Pct Ni alloys. Metall Mater Trans A 39:865–874CrossRef Reinhart G, Buffet A, Nguyen-Thi H, Billia B, Jung H, Mangelinck-Noël N, Bergeon N, Schenk T, Härtwig J, Baruchel J (2008) In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al-3.5 wt Pct Ni alloys. Metall Mater Trans A 39:865–874CrossRef
21.
Zurück zum Zitat Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K (2009) In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy. Acta Mater 57:2300–2310CrossRef Limodin N, Salvo L, Boller E, Suéry M, Felberbaum M, Gailliègue S, Madi K (2009) In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy. Acta Mater 57:2300–2310CrossRef
22.
Zurück zum Zitat Nguyen-Thi H, Salvo L, Mathiesen RH, Arnberg L, Billia B, Suery M, Reinhart G (2012) On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. C R Phys 13:237–245CrossRef Nguyen-Thi H, Salvo L, Mathiesen RH, Arnberg L, Billia B, Suery M, Reinhart G (2012) On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. C R Phys 13:237–245CrossRef
23.
Zurück zum Zitat Cai B, Wang J, Kao A, Pericleous K, Phillion AB, Atwood RC, Lee PD (2016) 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater 117:160–169CrossRef Cai B, Wang J, Kao A, Pericleous K, Phillion AB, Atwood RC, Lee PD (2016) 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater 117:160–169CrossRef
24.
Zurück zum Zitat Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1996) Dynamic pressure control for solution growth and its microgravity application. J Cryst Growth 158:328–335CrossRef Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1996) Dynamic pressure control for solution growth and its microgravity application. J Cryst Growth 158:328–335CrossRef
25.
Zurück zum Zitat Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1998) Effects of gravity on a free dendrite of NH4Cl grown by dynamic pressure control. J Cryst Growth 191:225–233CrossRef Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1998) Effects of gravity on a free dendrite of NH4Cl grown by dynamic pressure control. J Cryst Growth 191:225–233CrossRef
26.
Zurück zum Zitat LaCombe JC, Koss MB, Tennenhouse LA, Winsa EA, Glicksman ME (1998) The Clapeyron effect in succinonitrile: applications to crystal growth. J Cryst Growth 194:143–148CrossRef LaCombe JC, Koss MB, Tennenhouse LA, Winsa EA, Glicksman ME (1998) The Clapeyron effect in succinonitrile: applications to crystal growth. J Cryst Growth 194:143–148CrossRef
27.
Zurück zum Zitat Kar P, LaCombe JC, Koss MB (2004) Velocity and radius transients during pressure mediated dendritic growth of succinonitrile. Mater Sci Technol Lond 20:1273–1280CrossRef Kar P, LaCombe JC, Koss MB (2004) Velocity and radius transients during pressure mediated dendritic growth of succinonitrile. Mater Sci Technol Lond 20:1273–1280CrossRef
28.
Zurück zum Zitat Koss MB, LaCombe JC, Chait A, Pines V, Zlatkowski M, Glicksman ME, Kar P (2005) Pressure-mediated effects on thermal dendrites. J Cryst Growth 279:170–185CrossRef Koss MB, LaCombe JC, Chait A, Pines V, Zlatkowski M, Glicksman ME, Kar P (2005) Pressure-mediated effects on thermal dendrites. J Cryst Growth 279:170–185CrossRef
29.
Zurück zum Zitat Sazaki G, Nagatoshi Y, Suzuki Y, Durbin SD, Miyashita S, Nakada T, Komatsu H (1999) Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. J Cryst Growth 196:204–209CrossRef Sazaki G, Nagatoshi Y, Suzuki Y, Durbin SD, Miyashita S, Nakada T, Komatsu H (1999) Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. J Cryst Growth 196:204–209CrossRef
30.
Zurück zum Zitat Provatas N, Elder K (2011) Phase-field methods in materials science and engineering. Wiley, Weinheim Provatas N, Elder K (2011) Phase-field methods in materials science and engineering. Wiley, Weinheim
31.
Zurück zum Zitat Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391–4399CrossRef Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391–4399CrossRef
32.
Zurück zum Zitat Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701CrossRef Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701CrossRef
33.
Zurück zum Zitat Han G, Han Z, Luo AA, Liu B (2015) Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg-Al-based alloys. Metall Mater Trans A 46:948–962CrossRef Han G, Han Z, Luo AA, Liu B (2015) Three-dimensional phase-field simulation and experimental validation of β-Mg17Al12 phase precipitation in Mg-Al-based alloys. Metall Mater Trans A 46:948–962CrossRef
34.
Zurück zum Zitat Zhu J, Liu Z, Vaithyanathan V, Chen L (2002) Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scr Mater 46:401–406CrossRef Zhu J, Liu Z, Vaithyanathan V, Chen L (2002) Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scr Mater 46:401–406CrossRef
35.
Zurück zum Zitat Liu H, Gao Y, Zhu Y, Wang Y, Nie J (2014) A simulation study of β1 precipitation on dislocations in an Mg–rare earth alloy. Acta Mater 77:133–150CrossRef Liu H, Gao Y, Zhu Y, Wang Y, Nie J (2014) A simulation study of β1 precipitation on dislocations in an Mg–rare earth alloy. Acta Mater 77:133–150CrossRef
36.
Zurück zum Zitat Xing H, Ankit K, Dong X, Chen H, Jin K (2018) Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: a phase-field study. Int J Heat Mass Transf 117:1107–1114CrossRef Xing H, Ankit K, Dong X, Chen H, Jin K (2018) Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: a phase-field study. Int J Heat Mass Transf 117:1107–1114CrossRef
37.
Zurück zum Zitat Xing H, Zhang L, Song K, Chen H, Jin K (2017) Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: insights from phase-field simulations. Int J Heat Mass Transf 104:607–614CrossRef Xing H, Zhang L, Song K, Chen H, Jin K (2017) Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: insights from phase-field simulations. Int J Heat Mass Transf 104:607–614CrossRef
39.
Zurück zum Zitat Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83CrossRef Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83CrossRef
40.
Zurück zum Zitat Tourret D, Song Y, Clarke AJ, Karma A (2017) Grain growth competition during thin-sample directional solidification of dendritic microstructures: a phase-field study. Acta Mater 122:220–235CrossRef Tourret D, Song Y, Clarke AJ, Karma A (2017) Grain growth competition during thin-sample directional solidification of dendritic microstructures: a phase-field study. Acta Mater 122:220–235CrossRef
41.
Zurück zum Zitat Shang S, Han Z, Luo AA (2018) Phase-field modelling on effect of pressure on growth kinetics of Mg–Al–Sn alloy. Mater Sci Technol Lond 34:1362–1369CrossRef Shang S, Han Z, Luo AA (2018) Phase-field modelling on effect of pressure on growth kinetics of Mg–Al–Sn alloy. Mater Sci Technol Lond 34:1362–1369CrossRef
42.
Zurück zum Zitat Shang S, Han Z, Luo AA (2018) Study on the response of dendritic growth to periodic increase-decrease pressure in solidification via in situ observation using succinonitrile. J Cryst Growth 498:85–92CrossRef Shang S, Han Z, Luo AA (2018) Study on the response of dendritic growth to periodic increase-decrease pressure in solidification via in situ observation using succinonitrile. J Cryst Growth 498:85–92CrossRef
44.
Zurück zum Zitat Boschetto A, Costanza G, Quadrini F, Tata ME (2007) Cooling rate inference in aluminum alloy squeeze casting. Mater Lett 61:2969–2972CrossRef Boschetto A, Costanza G, Quadrini F, Tata ME (2007) Cooling rate inference in aluminum alloy squeeze casting. Mater Lett 61:2969–2972CrossRef
45.
Zurück zum Zitat Karma A, Rappel W (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349CrossRef Karma A, Rappel W (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349CrossRef
46.
Zurück zum Zitat Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:61604CrossRef Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:61604CrossRef
47.
Zurück zum Zitat Ananth R, Gill WN (1997) Dendritic growth in microgravity and forced convection. J Cryst Growth 179:263–276CrossRef Ananth R, Gill WN (1997) Dendritic growth in microgravity and forced convection. J Cryst Growth 179:263–276CrossRef
Metadaten
Titel
In situ observation and phase-field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile
verfasst von
Shan Shang
Zhiqiang Han
Publikationsdatum
31.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3074-x

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Science 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.