Skip to main content
Erschienen in: Journal of Coatings Technology and Research 3/2017

02.02.2017

In vitro bactericidal effect of ultrasonically sol–gel-coated novel CuO/TiO2/PEG/cotton nanocomposite for wound care

verfasst von: Arman Khani, Nasrin Talebian

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protection against bacterial contamination remains a demand for healthcare textiles such as wound dressings to reduce or eliminate hospital-acquired infections related to antibiotic-resistant bacteria. We report herein a simple and straightforward in situ approach to deposit copper oxide and titanium oxide nanoparticles onto cotton fabric using a sonochemical-mediated sol–gel method. Modification of the cotton surface was achieved by incorporation of citric acid (CA) and polyethylene glycol (PEG) to improve the attachment of the nanoparticles and reduce the attachment of bacteria to the cotton surface, respectively. The resultant cotton fabric was used against Escherichia coli as a Gram-negative bacterium and Staphylococcus aureus as a Gram-positive bacterium in dark condition as an in vitro model for treatment of bacterial wound infection. The effects of different treatment parameters including duration and frequency of ultrasonic irradiation, surface modification with PEG and/or CA, and cotton chemical composition with different metal oxide molar ratios on the antibacterial activity of the treated cotton fabric were studied. All treated cotton fabrics showed antibacterial activity, with higher efficiency for those coated with CuO or CuO/TiO2 (1:1 molar ratio) among the single metal oxide and composite-modified cotton fibers, respectively. Our results show that such functionalized cotton fibers could actively fight the spread of bacterial infections by preventing bacterial adhesion, enabling more efficient bonding, and ultrasonically promoting generation of nanoparticles and their strong adhesion to the fabric surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lim, SH, Hudson, SM, “Application of a Fiber-Reactive Chitosan Derivative to Cotton Fabric as an Antimicrobial Textile Finish.” Carbohydr. Polym., 56 227–234 (2004)CrossRef Lim, SH, Hudson, SM, “Application of a Fiber-Reactive Chitosan Derivative to Cotton Fabric as an Antimicrobial Textile Finish.” Carbohydr. Polym., 56 227–234 (2004)CrossRef
2.
Zurück zum Zitat Fei, B, Deng, Z, Xin, JH, Zhang, Y, Pang, G, “Room Temperature Synthesis of Rutile Nanorods and Their Applications on Cloth.” Nanotechnology, 17 1927–1931 (2006)CrossRef Fei, B, Deng, Z, Xin, JH, Zhang, Y, Pang, G, “Room Temperature Synthesis of Rutile Nanorods and Their Applications on Cloth.” Nanotechnology, 17 1927–1931 (2006)CrossRef
3.
Zurück zum Zitat Nonami, T, Hase, H, Funakoshi, K, “Apatite-Coated Titanium Dioxide Photocatalyst for Air Purification.” Catal. Today, 96 113–118 (2004)CrossRef Nonami, T, Hase, H, Funakoshi, K, “Apatite-Coated Titanium Dioxide Photocatalyst for Air Purification.” Catal. Today, 96 113–118 (2004)CrossRef
4.
Zurück zum Zitat Qi, K, Daoud, WA, Xin, JH, et al., “Self-Cleaning Cotton.” J. Mater. Chem., 16 4567–4574 (2006)CrossRef Qi, K, Daoud, WA, Xin, JH, et al., “Self-Cleaning Cotton.” J. Mater. Chem., 16 4567–4574 (2006)CrossRef
5.
Zurück zum Zitat Foster, HA, Ditta, IB, Varghese, S, Steele, A, “Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity.” Appl. Microbiol. Biotechnol., 90 847–868 (2011)CrossRef Foster, HA, Ditta, IB, Varghese, S, Steele, A, “Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity.” Appl. Microbiol. Biotechnol., 90 847–868 (2011)CrossRef
6.
Zurück zum Zitat Karunakaran, C, Abiramasundari, G, Gomathisankar, P, et al., “Cu-Doped TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria Under Visible Light.” Colloid Interface Sci., 352 68–74 (2010)CrossRef Karunakaran, C, Abiramasundari, G, Gomathisankar, P, et al., “Cu-Doped TiO2 Nanoparticles for Photocatalytic Disinfection of Bacteria Under Visible Light.” Colloid Interface Sci., 352 68–74 (2010)CrossRef
7.
Zurück zum Zitat Pham, T-D, Lee, B-K, “Cu Doped TiO2/GF for Photocatalytic Disinfection of Escherichia coli in Bioaerosols Under Visible Light Irradiation: Application and Mechanism.” Appl. Surf. Sci., 296 15–23 (2014)CrossRef Pham, T-D, Lee, B-K, “Cu Doped TiO2/GF for Photocatalytic Disinfection of Escherichia coli in Bioaerosols Under Visible Light Irradiation: Application and Mechanism.” Appl. Surf. Sci., 296 15–23 (2014)CrossRef
8.
Zurück zum Zitat Khan, MM, Ansari, SA, Pradhan, D, et al., “Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies.” J. Mater. Chem. A, 2 637–644 (2014)CrossRef Khan, MM, Ansari, SA, Pradhan, D, et al., “Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies.” J. Mater. Chem. A, 2 637–644 (2014)CrossRef
9.
Zurück zum Zitat Yadav, HM, Otari, SV, Bohara, RA, et al., “Synthesis and Visible Light Photocatalytic Antibacterial Activity of Nickel-Doped TiO2 Nanoparticles Against Gram-Positive and Gram-Negative Bacteria.” J. Photochem. Photobiol. A Chem., 15 130–136 (2014)CrossRef Yadav, HM, Otari, SV, Bohara, RA, et al., “Synthesis and Visible Light Photocatalytic Antibacterial Activity of Nickel-Doped TiO2 Nanoparticles Against Gram-Positive and Gram-Negative Bacteria.” J. Photochem. Photobiol. A Chem., 15 130–136 (2014)CrossRef
10.
Zurück zum Zitat Ashkarran, AA, Hamidinezhad, H, Haddadi, H, et al., “Double-Doped TiO2 Nanoparticles as an Efficient Visible-Light-Active Photocatalyst and Antibacterial Agent Under Solar Simulated Light.” Appl. Surf. Sci., 301 (15) 338–345 (2014)CrossRef Ashkarran, AA, Hamidinezhad, H, Haddadi, H, et al., “Double-Doped TiO2 Nanoparticles as an Efficient Visible-Light-Active Photocatalyst and Antibacterial Agent Under Solar Simulated Light.” Appl. Surf. Sci., 301 (15) 338–345 (2014)CrossRef
11.
Zurück zum Zitat Ananpattarachai, J, Boonto, Y, Kajitvichyanukul, P, “Visible Light Photocatalytic Antibacterial Activity of Ni-Doped and N-Doped TiO2 on Staphylococcus aureus and Escherichia coli Bacteria.” Environ. Sci. Pollut. Res., (2015). doi:10.1007/s11356-015-4775-1 Ananpattarachai, J, Boonto, Y, Kajitvichyanukul, P, “Visible Light Photocatalytic Antibacterial Activity of Ni-Doped and N-Doped TiO2 on Staphylococcus aureus and Escherichia coli Bacteria.” Environ. Sci. Pollut. Res., (2015). doi:10.​1007/​s11356-015-4775-1
12.
Zurück zum Zitat Hostynek, JJ, Maibach, HI, “Copper Hypersensitivity: Dermatologic Aspects—An Overview.” Rev. Environ. Health, 18 (3) 153–183 (2003)CrossRef Hostynek, JJ, Maibach, HI, “Copper Hypersensitivity: Dermatologic Aspects—An Overview.” Rev. Environ. Health, 18 (3) 153–183 (2003)CrossRef
13.
Zurück zum Zitat Uauy, R, Olivares, M, Gonzalez, M, “Essentiality of Copper in Humans.” Am. J. Clin. Nutr., 67 952S–959S (1998) Uauy, R, Olivares, M, Gonzalez, M, “Essentiality of Copper in Humans.” Am. J. Clin. Nutr., 67 952S–959S (1998)
14.
Zurück zum Zitat Pereira, CE, Felcman, E, “Correlation Between Five Minerals and the Healing Effect of Brazilian Medicinal Plants.” J. Biol. Trace Elem. Res., 65 251–259 (1998)CrossRef Pereira, CE, Felcman, E, “Correlation Between Five Minerals and the Healing Effect of Brazilian Medicinal Plants.” J. Biol. Trace Elem. Res., 65 251–259 (1998)CrossRef
15.
Zurück zum Zitat Micheals, HT, “Anti-microbial Characteristics of Copper.” Stand. News, 34 28–31 (2006) Micheals, HT, “Anti-microbial Characteristics of Copper.” Stand. News, 34 28–31 (2006)
16.
Zurück zum Zitat Hostynek, JJ, Dreher, F, Maibach, HI, “Human Stratum Corneum Penetration by Copper: In vivo Study After Occlusive and Semi-Occlusive Application of the Metal as Powder.” Food Chem. Toxicol., 44 1539–1543 (2006)CrossRef Hostynek, JJ, Dreher, F, Maibach, HI, “Human Stratum Corneum Penetration by Copper: In vivo Study After Occlusive and Semi-Occlusive Application of the Metal as Powder.” Food Chem. Toxicol., 44 1539–1543 (2006)CrossRef
17.
Zurück zum Zitat Pickart, L, “The Human Tri-peptide GHK and Tissue Remodeling.” J. Biomater. Sci. Polym. Ed., 19 969–988 (2008)CrossRef Pickart, L, “The Human Tri-peptide GHK and Tissue Remodeling.” J. Biomater. Sci. Polym. Ed., 19 969–988 (2008)CrossRef
18.
Zurück zum Zitat Borkow, G, Gabbay, J, Zatcoff, RC, “Could Chronic Wounds Not Heal Due to Too Low Local Copper Levels?” Med. Hypotheses, 70 610–613 (2008)CrossRef Borkow, G, Gabbay, J, Zatcoff, RC, “Could Chronic Wounds Not Heal Due to Too Low Local Copper Levels?” Med. Hypotheses, 70 610–613 (2008)CrossRef
19.
Zurück zum Zitat Chen, S, Guo, Y, Chen, S, et al., “Fabrication of Cu/TiO2 Nanocomposite: Toward an Enhanced Antibacterial Performance in the Absence of Light.” Mater. Lett., 83 154–157 (2012)CrossRef Chen, S, Guo, Y, Chen, S, et al., “Fabrication of Cu/TiO2 Nanocomposite: Toward an Enhanced Antibacterial Performance in the Absence of Light.” Mater. Lett., 83 154–157 (2012)CrossRef
20.
Zurück zum Zitat Baghriche, O, Rtimi, S, Pulgarin, C, et al., “Innovative TiO2/Cu Nanosurfaces Inactivating Bacteria in the Minute Range Under Low-Intensity Actinic Light.” ACS Appl. Mater. Interfaces, 10 5234–5240 (2012)CrossRef Baghriche, O, Rtimi, S, Pulgarin, C, et al., “Innovative TiO2/Cu Nanosurfaces Inactivating Bacteria in the Minute Range Under Low-Intensity Actinic Light.” ACS Appl. Mater. Interfaces, 10 5234–5240 (2012)CrossRef
21.
Zurück zum Zitat Schmidt, F, Fischer, A, Haufe, H, Leisegang, T, Mahltig, B, “Solvothermally Prepared Copper Modified TiO2 Composite Sols—A Coating Agent for Textiles to Realize Photocatalytic Active and Antimicrobial Fabrics” Chapter 13 in: Textiles: Types, Uses and Production Methods, pp. 439–466. Nova Science Publishers Inc., (2012) Schmidt, F, Fischer, A, Haufe, H, Leisegang, T, Mahltig, B, “Solvothermally Prepared Copper Modified TiO2 Composite Sols—A Coating Agent for Textiles to Realize Photocatalytic Active and Antimicrobial Fabrics” Chapter 13 in: Textiles: Types, Uses and Production Methods, pp. 439–466. Nova Science Publishers Inc., (2012)
22.
Zurück zum Zitat Ramesh, S, Koltypin, Y, Prozorov, R, et al., “Sonochemical Impregnation of Submicron Silica Spheres with Ni Nanoparticles.” Chem. Mater., 9 546–551 (1997)CrossRef Ramesh, S, Koltypin, Y, Prozorov, R, et al., “Sonochemical Impregnation of Submicron Silica Spheres with Ni Nanoparticles.” Chem. Mater., 9 546–551 (1997)CrossRef
23.
Zurück zum Zitat Sadr, FA, Montazer, M, “In situ Sonosynthesis of Nano TiO2 on Cotton Fabric.” Ultrason. Sonochem., 21 681–691 (2014)CrossRef Sadr, FA, Montazer, M, “In situ Sonosynthesis of Nano TiO2 on Cotton Fabric.” Ultrason. Sonochem., 21 681–691 (2014)CrossRef
24.
Zurück zum Zitat Prasad, K, Pinjari, DV, Pandit, AB, et al., “Phase Transformation of Nanostructured Titanium Dioxide from Anatase-To-Rutile via Combined Ultrasound Assisted Sol–Gel Technique.” Ultrason. Sonochem., 17 409–415 (2010)CrossRef Prasad, K, Pinjari, DV, Pandit, AB, et al., “Phase Transformation of Nanostructured Titanium Dioxide from Anatase-To-Rutile via Combined Ultrasound Assisted Sol–Gel Technique.” Ultrason. Sonochem., 17 409–415 (2010)CrossRef
25.
Zurück zum Zitat Prasad, K, Pinjari, DV, Pandit, AB, et al., “Synthesis of Titanium Dioxide by Ultrasound Assisted Sol–Gel Technique: Effect of Amplitude (Power Density) Variation.” Ultrason. Sonochem., 17 697–703 (2010)CrossRef Prasad, K, Pinjari, DV, Pandit, AB, et al., “Synthesis of Titanium Dioxide by Ultrasound Assisted Sol–Gel Technique: Effect of Amplitude (Power Density) Variation.” Ultrason. Sonochem., 17 697–703 (2010)CrossRef
26.
Zurück zum Zitat Ghows, N, Entezari, MH, “Fast and Easy Synthesis of Core-Shell Nanocrystals (CdS/TiO2) at Low Temperature by Micro-Emulsion Under Ultrasound.” Ultrason. Sonochem., 18 629–634 (2011)CrossRef Ghows, N, Entezari, MH, “Fast and Easy Synthesis of Core-Shell Nanocrystals (CdS/TiO2) at Low Temperature by Micro-Emulsion Under Ultrasound.” Ultrason. Sonochem., 18 629–634 (2011)CrossRef
27.
Zurück zum Zitat Guo, J, Zhu, S, Chen, Z, et al., “Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst.” Ultrason. Sonochem., 18 1082–1090 (2011)CrossRef Guo, J, Zhu, S, Chen, Z, et al., “Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst.” Ultrason. Sonochem., 18 1082–1090 (2011)CrossRef
30.
Zurück zum Zitat Kyriacou, SV, Brownlow, WJ, Xu, XH, “Using Nanoparticle Optics Assay for Direct Observation of Function of Antimicrobial Agents in Single Live Bacterial Cells.” Biochemistry, 43 140–147 (2004)CrossRef Kyriacou, SV, Brownlow, WJ, Xu, XH, “Using Nanoparticle Optics Assay for Direct Observation of Function of Antimicrobial Agents in Single Live Bacterial Cells.” Biochemistry, 43 140–147 (2004)CrossRef
31.
Zurück zum Zitat Selvam, S, Sundrarajan, M, “Functionalization of Cotton Fabric with PVP/ZnO Nanoparticles for Improved Reactive Dyeability and Antibacterial Activity.” Carbohydr. Polym., 87 1419–1424 (2012)CrossRef Selvam, S, Sundrarajan, M, “Functionalization of Cotton Fabric with PVP/ZnO Nanoparticles for Improved Reactive Dyeability and Antibacterial Activity.” Carbohydr. Polym., 87 1419–1424 (2012)CrossRef
32.
Zurück zum Zitat Cheng, Q, Li, C, Pavlinek, V, et al., “Surface-Modified Antibacterial TiO2/Ag Nanoparticles: Preparation and Properties.” Appl. Surf. Sci., 252 4154–4160 (2006)CrossRef Cheng, Q, Li, C, Pavlinek, V, et al., “Surface-Modified Antibacterial TiO2/Ag Nanoparticles: Preparation and Properties.” Appl. Surf. Sci., 252 4154–4160 (2006)CrossRef
33.
Zurück zum Zitat Boekema, BKHL, Pool, L, Ulrich, MMW, “The Effect of a Honey Based Gel and Silver Sulphadiazine on Bacterial Infections of In Vitro Burn Wounds.” Burns, 39 754–759 (2013)CrossRef Boekema, BKHL, Pool, L, Ulrich, MMW, “The Effect of a Honey Based Gel and Silver Sulphadiazine on Bacterial Infections of In Vitro Burn Wounds.” Burns, 39 754–759 (2013)CrossRef
34.
Zurück zum Zitat Gupta, B, Arora, A, Saxena, S, et al., “Preparation of Chitosan–Polyethylene Glycol Coated Cotton Membranes for Wound Dressings: Preparation and Characterization.” Polym. Adv. Technol., 20 58–65 (2009)CrossRef Gupta, B, Arora, A, Saxena, S, et al., “Preparation of Chitosan–Polyethylene Glycol Coated Cotton Membranes for Wound Dressings: Preparation and Characterization.” Polym. Adv. Technol., 20 58–65 (2009)CrossRef
35.
Zurück zum Zitat Shingel, KI, Di Stabile, L, Marty, JP, et al., “Inflammatory Inert Poly(ethylene glycol)–Protein Wound Dressing Improves Healing Responses In Partial- and Full-Thickness Wounds.” Int. Wound J., 3 332–342 (2006)CrossRef Shingel, KI, Di Stabile, L, Marty, JP, et al., “Inflammatory Inert Poly(ethylene glycol)–Protein Wound Dressing Improves Healing Responses In Partial- and Full-Thickness Wounds.” Int. Wound J., 3 332–342 (2006)CrossRef
36.
Zurück zum Zitat Sinha, M, Banik, RM, Haldar, C, et al., “Development of Ciprofloxacin Hydrochloride Loaded Poly(Ethylene Glycol)/Chitosan Scaffold as Wound Dressing.” J. Porous Mater., 20 799–807 (2013)CrossRef Sinha, M, Banik, RM, Haldar, C, et al., “Development of Ciprofloxacin Hydrochloride Loaded Poly(Ethylene Glycol)/Chitosan Scaffold as Wound Dressing.” J. Porous Mater., 20 799–807 (2013)CrossRef
37.
Zurück zum Zitat Bader, RA, Herzog, KT, Kao, WJ, “A Study of Diffusion in Poly(Ethyleneglycol)-Gelatin Based Semi-Interpenetrating Networks for Use in Wound Healing.” Polym. Bull., 62 381–389 (2009)CrossRef Bader, RA, Herzog, KT, Kao, WJ, “A Study of Diffusion in Poly(Ethyleneglycol)-Gelatin Based Semi-Interpenetrating Networks for Use in Wound Healing.” Polym. Bull., 62 381–389 (2009)CrossRef
38.
Zurück zum Zitat Klemm, D, Heublein, B, Fink, H-P, et al., “Cellulose: Fascinating Biopolymer and Sustainable Raw Material.” Angew. Chem. Int. Ed., 44 3358–3393 (2005)CrossRef Klemm, D, Heublein, B, Fink, H-P, et al., “Cellulose: Fascinating Biopolymer and Sustainable Raw Material.” Angew. Chem. Int. Ed., 44 3358–3393 (2005)CrossRef
39.
Zurück zum Zitat Jin, C, Jiang, Y, Niu, T, Huang, J, “Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification.” Mater. Chem., 22 2562–12567 (2012) Jin, C, Jiang, Y, Niu, T, Huang, J, “Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification.” Mater. Chem., 22 2562–12567 (2012)
40.
Zurück zum Zitat Huang, J, Gu, Y, “Self-Assembly of Various Guest Substrates in Natural Cellulose Substances to Functional Nanostructured Materials.” Curr. Opin. Colloid Interface Sci., 16 470–481 (2011)CrossRef Huang, J, Gu, Y, “Self-Assembly of Various Guest Substrates in Natural Cellulose Substances to Functional Nanostructured Materials.” Curr. Opin. Colloid Interface Sci., 16 470–481 (2011)CrossRef
41.
Zurück zum Zitat Alongi, J, Ciobanu, M, Tata, J, et al., “Thermal Stability and Flame Retardancy of Polyester, Cotton, and Relative Blend Textile Fabrics Subjected to Sol-Gel Treatments.” J. Appl. Polym. Sci., 119 1961–1969 (2011)CrossRef Alongi, J, Ciobanu, M, Tata, J, et al., “Thermal Stability and Flame Retardancy of Polyester, Cotton, and Relative Blend Textile Fabrics Subjected to Sol-Gel Treatments.” J. Appl. Polym. Sci., 119 1961–1969 (2011)CrossRef
42.
Zurück zum Zitat Uddin, MJ, Cesano, F, Bonino, F, et al., “A Tailoring the Activity of Ti-Based Photocatalysts by Playing with Surface Morphology and Silver Doping.” J. Photochem. Photobiol. A Chem., 196 165–173 (2008)CrossRef Uddin, MJ, Cesano, F, Bonino, F, et al., “A Tailoring the Activity of Ti-Based Photocatalysts by Playing with Surface Morphology and Silver Doping.” J. Photochem. Photobiol. A Chem., 196 165–173 (2008)CrossRef
43.
Zurück zum Zitat Bauer, W, Kirby, WM, Sherris, JC, et al., “Antibiotic Susceptibility Testing by a Standardized Single Disk Method.” Am. J. Clin. Pathol., 45 493–496 (1966) Bauer, W, Kirby, WM, Sherris, JC, et al., “Antibiotic Susceptibility Testing by a Standardized Single Disk Method.” Am. J. Clin. Pathol., 45 493–496 (1966)
44.
Zurück zum Zitat Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 8 60–72 (2008) Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 8 60–72 (2008)
45.
Zurück zum Zitat Perelshtein, I, Applerot, G, Perkas, N, et al., “A One-Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO2 Nanoparticles.” Chem. Eur. J., 18 4575–4582 (2012)CrossRef Perelshtein, I, Applerot, G, Perkas, N, et al., “A One-Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO2 Nanoparticles.” Chem. Eur. J., 18 4575–4582 (2012)CrossRef
46.
Zurück zum Zitat Applerot, G, Lellouche, J, Lipovsky, A, et al., “Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress.” Small, 8 3326–3337 (2012)CrossRef Applerot, G, Lellouche, J, Lipovsky, A, et al., “Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress.” Small, 8 3326–3337 (2012)CrossRef
47.
Zurück zum Zitat Gunawan, C, Teoh, WY, Marquis, CP, et al., “Cytotoxic Origin of Copper (II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts.” ACS Nano., 5 7214–7225 (2011)CrossRef Gunawan, C, Teoh, WY, Marquis, CP, et al., “Cytotoxic Origin of Copper (II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts.” ACS Nano., 5 7214–7225 (2011)CrossRef
48.
Zurück zum Zitat Ludmil, T, Benov, S, Fridovich, I, “Escherichia coli Expresses a Copper- and Zinc Containing Superoxide Dismutase.” J. Biol. Chem., 269 25310–25314 (1994) Ludmil, T, Benov, S, Fridovich, I, “Escherichia coli Expresses a Copper- and Zinc Containing Superoxide Dismutase.” J. Biol. Chem., 269 25310–25314 (1994)
49.
Zurück zum Zitat Hu, XK, Cook, S, Wang, P, Hwang, HM, “In Vitro Evaluation of Cytotoxicity of Engineered Metal Oxide Nanoparticles.” Sci. Total Environ., 407 3070–3072 (2009)CrossRef Hu, XK, Cook, S, Wang, P, Hwang, HM, “In Vitro Evaluation of Cytotoxicity of Engineered Metal Oxide Nanoparticles.” Sci. Total Environ., 407 3070–3072 (2009)CrossRef
50.
Zurück zum Zitat Orhan, M, Kut, D, Gunesoglu, C, “Improving the Antibacterial Activity of Cotton Fabrics Finished with Triclosan by the Use of 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid.” J. Appl. Polym. Sci., 111 1344–1352 (2009)CrossRef Orhan, M, Kut, D, Gunesoglu, C, “Improving the Antibacterial Activity of Cotton Fabrics Finished with Triclosan by the Use of 1,2,3,4-Butanetetracarboxylic Acid and Citric Acid.” J. Appl. Polym. Sci., 111 1344–1352 (2009)CrossRef
51.
Zurück zum Zitat Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)CrossRef Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)CrossRef
52.
Zurück zum Zitat Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 1359–1384 (2007)CrossRef Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 1359–1384 (2007)CrossRef
53.
Zurück zum Zitat Wach, J-Y, Bonazzi, S, Gademann, K, “Antimicrobial Surfaces Through Natural Product Hybrids.” Angew. Chem. Int. Ed., 47 7123–7126 (2008)CrossRef Wach, J-Y, Bonazzi, S, Gademann, K, “Antimicrobial Surfaces Through Natural Product Hybrids.” Angew. Chem. Int. Ed., 47 7123–7126 (2008)CrossRef
54.
Zurück zum Zitat Dexter, SC, Sullivan, JD, William, J, Watson, SW, “Influence of Substrate Wettability on the Attachment of Marine Bacteria to Various Surfaces.” Appl. Microbiol., 30 298–308 (1975) Dexter, SC, Sullivan, JD, William, J, Watson, SW, “Influence of Substrate Wettability on the Attachment of Marine Bacteria to Various Surfaces.” Appl. Microbiol., 30 298–308 (1975)
55.
Zurück zum Zitat Adams, AP, Santschi, EM, Mellencamp, MA, “Antibacterial Properties of a Silver Chloride-Coated Nylon Wound Dressing.” Vet. Surg., 28 219–225 (1999)CrossRef Adams, AP, Santschi, EM, Mellencamp, MA, “Antibacterial Properties of a Silver Chloride-Coated Nylon Wound Dressing.” Vet. Surg., 28 219–225 (1999)CrossRef
56.
Zurück zum Zitat Kingshott, P, Griesser, HJ, “Surfaces that Resist Bioadhesion.” Curr. Opin. Solid State Mater. Sci., 4 403–412 (1999)CrossRef Kingshott, P, Griesser, HJ, “Surfaces that Resist Bioadhesion.” Curr. Opin. Solid State Mater. Sci., 4 403–412 (1999)CrossRef
57.
Zurück zum Zitat Liu, Y, Kim, H-I, “Characterization and Antibacterial Properties of Genipin-Crosslinked Chitosan/Poly(Ethylene Glycol)/ZnO/Ag Nanocomposites.” Carbohydr. Polym., 89 (1) 111–116 (2012)CrossRef Liu, Y, Kim, H-I, “Characterization and Antibacterial Properties of Genipin-Crosslinked Chitosan/Poly(Ethylene Glycol)/ZnO/Ag Nanocomposites.” Carbohydr. Polym., 89 (1) 111–116 (2012)CrossRef
58.
Zurück zum Zitat Park, KD, Kim, YS, Han, DK, “Bacterial Adhesion on PEG Modified Polyurethane Surfaces.” Biomaterials, 19 (7) 851–859 (1998)CrossRef Park, KD, Kim, YS, Han, DK, “Bacterial Adhesion on PEG Modified Polyurethane Surfaces.” Biomaterials, 19 (7) 851–859 (1998)CrossRef
59.
Zurück zum Zitat Harris, JM, Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum, New York (1992)CrossRef Harris, JM, Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum, New York (1992)CrossRef
60.
Zurück zum Zitat Wu, B, Huang, R, Sahu, M, Feng, X, Biswas, P, Tang, YJ, “Cu-Doped TiO2 Nanoparticles Enhance Survival of Shewanella oneidensis MR-1 Under Ultraviolet Light (UV) Exposure.” Sci. Total Environ., 408 1755–1758 (2010)CrossRef Wu, B, Huang, R, Sahu, M, Feng, X, Biswas, P, Tang, YJ, “Cu-Doped TiO2 Nanoparticles Enhance Survival of Shewanella oneidensis MR-1 Under Ultraviolet Light (UV) Exposure.” Sci. Total Environ., 408 1755–1758 (2010)CrossRef
61.
Zurück zum Zitat Hassan, MS, Amna, T, Kim, HY, Khil, M-S, “Enhanced Bactericidal Effect of Novel CuO/TiO2 Composite Nanorods and a Mechanism Thereof.” Compos. Part B, 45 904–910 (2013)CrossRef Hassan, MS, Amna, T, Kim, HY, Khil, M-S, “Enhanced Bactericidal Effect of Novel CuO/TiO2 Composite Nanorods and a Mechanism Thereof.” Compos. Part B, 45 904–910 (2013)CrossRef
62.
Zurück zum Zitat Guo, YG, Cao, FF, Xin, S, Wan, LJ, “Wet Chemical Synthesis of Cu/TiO2 Anocomposites with Integrated Nano-Current-Collectors as High-Rate Anode Materials in Lithium-Ion Batteries.” Phys. Chem. Chem. Phys., 13 2014–2020 (2011)CrossRef Guo, YG, Cao, FF, Xin, S, Wan, LJ, “Wet Chemical Synthesis of Cu/TiO2 Anocomposites with Integrated Nano-Current-Collectors as High-Rate Anode Materials in Lithium-Ion Batteries.” Phys. Chem. Chem. Phys., 13 2014–2020 (2011)CrossRef
63.
Zurück zum Zitat Perelshtein, I, Applerot, G, Perkas, N, et al., “CuO-Cotton Nanoparticles: Formation, Morphology and Antibacterial Activity.” Surf. Coat. Technol., 204 54–57 (2009)CrossRef Perelshtein, I, Applerot, G, Perkas, N, et al., “CuO-Cotton Nanoparticles: Formation, Morphology and Antibacterial Activity.” Surf. Coat. Technol., 204 54–57 (2009)CrossRef
64.
Zurück zum Zitat Borkow, G, Gavia, J, “Copper as a Biocidal Tool.” Curr. Med. Chem., 12 2163–2175 (2005)CrossRef Borkow, G, Gavia, J, “Copper as a Biocidal Tool.” Curr. Med. Chem., 12 2163–2175 (2005)CrossRef
65.
Zurück zum Zitat Stoimenov, PK, Klinger, RL, Marchin, GL, Klabunde, KJ, “Metal Oxide Nanoparticles as Bactericidal Agents.” Langmuir, 18 6679–6686 (2002)CrossRef Stoimenov, PK, Klinger, RL, Marchin, GL, Klabunde, KJ, “Metal Oxide Nanoparticles as Bactericidal Agents.” Langmuir, 18 6679–6686 (2002)CrossRef
66.
Zurück zum Zitat Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 (1) 60–72 (2008)CrossRef Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 (1) 60–72 (2008)CrossRef
67.
Zurück zum Zitat Han, S, Yang, Y, “Antimicrobial Activity of Wool Fabric Treated with Curcumin.” Dyes Pigm., 64 157–161 (2005)CrossRef Han, S, Yang, Y, “Antimicrobial Activity of Wool Fabric Treated with Curcumin.” Dyes Pigm., 64 157–161 (2005)CrossRef
68.
Zurück zum Zitat Meilert, KT, Laub, D, Kiwi, J, “Photocatalytic Self-Cleaning of Modified Cotton Textiles by TiO2 Clusters Attached by Chemical Spacers.” J. Mol. Catal. A Chem., 237 101–108 (2005)CrossRef Meilert, KT, Laub, D, Kiwi, J, “Photocatalytic Self-Cleaning of Modified Cotton Textiles by TiO2 Clusters Attached by Chemical Spacers.” J. Mol. Catal. A Chem., 237 101–108 (2005)CrossRef
69.
Zurück zum Zitat Yuranova, T, Laub, D, Kiwi, J, “Synthesis, Activity and Characterization of Textiles Showing Self-Cleaning Activity Under Daylight Irradiation.” Catal. Today, 122 109–117 (2007)CrossRef Yuranova, T, Laub, D, Kiwi, J, “Synthesis, Activity and Characterization of Textiles Showing Self-Cleaning Activity Under Daylight Irradiation.” Catal. Today, 122 109–117 (2007)CrossRef
70.
Zurück zum Zitat Nazari, A, Montazer, M, Yazdanshenas, ME, et al., “Nano TiO2 Photo-Catalyst and Sodium Hypophosphite for Cross-Linking Cotton with Poly Carboxylic Acids Under UV and High Temperature.” Appl. Catal. A Gen., 371 10–16 (2009)CrossRef Nazari, A, Montazer, M, Yazdanshenas, ME, et al., “Nano TiO2 Photo-Catalyst and Sodium Hypophosphite for Cross-Linking Cotton with Poly Carboxylic Acids Under UV and High Temperature.” Appl. Catal. A Gen., 371 10–16 (2009)CrossRef
Metadaten
Titel
In vitro bactericidal effect of ultrasonically sol–gel-coated novel CuO/TiO2/PEG/cotton nanocomposite for wound care
verfasst von
Arman Khani
Nasrin Talebian
Publikationsdatum
02.02.2017
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 3/2017
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-016-9870-9

Weitere Artikel der Ausgabe 3/2017

Journal of Coatings Technology and Research 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.