Skip to main content
Erschienen in: Experimental Mechanics 1/2021

17.08.2020 | Sp Iss: Experimental Advances in Cardiovascular Biomechanics

In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics

verfasst von: A. H. Aly, A. H. Aly, E. K. Lai, N. Yushkevich, R. H. Stoffers, J. H. Gorman IV, A. T. Cheung, J. H. Gorman III, R. C. Gorman, P. A. Yushkevich, A. M. Pouch

Erschienen in: Experimental Mechanics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

In vivo characterization of mitral valve dynamics relies on image analysis algorithms that accurately reconstruct valve morphology and motion from clinical images. The goal of such algorithms is to provide patient-specific descriptions of both competent and regurgitant mitral valves, which can be used as input to biomechanical analyses and provide insights into the pathophysiology of diseases like ischemic mitral regurgitation (IMR).

Objective

The goal is to generate accurate image-based representations of valve dynamics that visually and quantitatively capture normal and pathological valve function.

Methods

We present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE), an imaging modality used for pre-operative surgical planning of mitral interventions. The framework integrates groupwise multi-atlas label fusion and template-based medial modeling with Kalman filtering to generate quantitatively descriptive and temporally consistent models of valve dynamics.

Results

The algorithm is evaluated on rt-3DE data series from 28 patients: 14 with normal mitral valve morphology and 14 with severe IMR. In these 28 data series that total 613 individual 3DE images, each 3D mitral valve segmentation is validated against manual tracing, and temporal consistency between segmentations is demonstrated.

Conclusions

Automated 4D image analysis allows for reliable non-invasive modeling of the mitral valve over the cardiac cycle for comparison of annular and leaflet dynamics in pathological and normal mitral valves. Future studies can apply this algorithm to cardiovascular mechanics applications, including patient-specific strain estimation, fluid dynamics simulation, inverse finite element analysis, and risk stratification for surgical treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Gorman JH 3rd, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3):712–726CrossRef Gorman JH 3rd, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3):712–726CrossRef
3.
Zurück zum Zitat Bothe W, Schubert H, Diab M, Faerber G, Bettag C, Jiang X, Fischer MS, Denzler J, Doenst T (2016) Fully automated tracking of cardiac structures using radiopaque markers and high-frequency videofluoroscopy in an in vivo ovine model: from three-dimensional marker coordinates to quantitative analyses. Springerplus 5:220. https://doi.org/10.1186/s40064-016-1868-3CrossRef Bothe W, Schubert H, Diab M, Faerber G, Bettag C, Jiang X, Fischer MS, Denzler J, Doenst T (2016) Fully automated tracking of cardiac structures using radiopaque markers and high-frequency videofluoroscopy in an in vivo ovine model: from three-dimensional marker coordinates to quantitative analyses. Springerplus 5:220. https://​doi.​org/​10.​1186/​s40064-016-1868-3CrossRef
4.
Zurück zum Zitat Zekry SB, Lawrie G, Little S, Zoghbi W, Freeman J, Jajoo A, Jain S, He J, Martynenko A, Azencott R (2012) Comparitive evaluation of mitral valve strain by deformation tracking in 3D-echocardiography. Cardiovasc Eng Technol 3(4):402–412CrossRef Zekry SB, Lawrie G, Little S, Zoghbi W, Freeman J, Jajoo A, Jain S, He J, Martynenko A, Azencott R (2012) Comparitive evaluation of mitral valve strain by deformation tracking in 3D-echocardiography. Cardiovasc Eng Technol 3(4):402–412CrossRef
6.
Zurück zum Zitat Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153CrossRef Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41(1):142–153CrossRef
8.
Zurück zum Zitat Hammer PE, Perrin DP, del Nido PJ, Howe RD (2008). Image-based mass-spring model of mitral valve closure for surgical planning. PRoceedings of SPIE medical imaging: visualization, image-guided procedures, and modeling 6918 Hammer PE, Perrin DP, del Nido PJ, Howe RD (2008). Image-based mass-spring model of mitral valve closure for surgical planning. PRoceedings of SPIE medical imaging: visualization, image-guided procedures, and modeling 6918
11.
Zurück zum Zitat Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 16:1330–1346. https://doi.org/10.1016/j.media.2012.05.009CrossRef Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 16:1330–1346. https://​doi.​org/​10.​1016/​j.​media.​2012.​05.​009CrossRef
12.
Zurück zum Zitat Schneider RJ, Tenenholtz NA, Perrin DP, Marx GR, del Nido PJ, Howe RD (2011) Patient-specific mitral leaflet segmentation from 4D ultrasound. Med Image Comput Comput Assist Interv 14(Pt 3):520–527 Schneider RJ, Tenenholtz NA, Perrin DP, Marx GR, del Nido PJ, Howe RD (2011) Patient-specific mitral leaflet segmentation from 4D ultrasound. Med Image Comput Comput Assist Interv 14(Pt 3):520–527
15.
Zurück zum Zitat Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, Smith PK, Hung JW, Blackstone EH, Puskas JD, Argenziano M, Gammie JS, Mack M, Ascheim DD, Bagiella E, Moquete EG, Ferguson TB, Horvath KA, Geller NL, Miller MA, Woo YJ, D'Alessandro DA, Ailawadi G, Dagenais F, Gardner TJ, O'Gara PT, Michler RE, Kron IL, Ctsn (2014) Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 370(1):23–32. https://doi.org/10.1056/NEJMoa1312808CrossRef Acker MA, Parides MK, Perrault LP, Moskowitz AJ, Gelijns AC, Voisine P, Smith PK, Hung JW, Blackstone EH, Puskas JD, Argenziano M, Gammie JS, Mack M, Ascheim DD, Bagiella E, Moquete EG, Ferguson TB, Horvath KA, Geller NL, Miller MA, Woo YJ, D'Alessandro DA, Ailawadi G, Dagenais F, Gardner TJ, O'Gara PT, Michler RE, Kron IL, Ctsn (2014) Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N Engl J Med 370(1):23–32. https://​doi.​org/​10.​1056/​NEJMoa1312808CrossRef
16.
Zurück zum Zitat Bouma W, Lai EK, Levack MM, Shang EK, Pouch AM, Eperjesi TJ, Plappert TJ, Yushkevich PA, Mariani MA, Khabbaz KR, Gleason TG, Mahmood F, Acker MA, Woo YJ, Cheung AT, Jackson BM, Gorman JH 3rd, Gorman RC (2016) Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral Annuloplasty. Ann Thorac Surg 101(2):567–575; discussion 575. https://doi.org/10.1016/j.athoracsur.2015.09.076CrossRef Bouma W, Lai EK, Levack MM, Shang EK, Pouch AM, Eperjesi TJ, Plappert TJ, Yushkevich PA, Mariani MA, Khabbaz KR, Gleason TG, Mahmood F, Acker MA, Woo YJ, Cheung AT, Jackson BM, Gorman JH 3rd, Gorman RC (2016) Preoperative three-dimensional valve analysis predicts recurrent ischemic mitral regurgitation after mitral Annuloplasty. Ann Thorac Surg 101(2):567–575; discussion 575. https://​doi.​org/​10.​1016/​j.​athoracsur.​2015.​09.​076CrossRef
17.
19.
Zurück zum Zitat Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM (2012) Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Med Phys 39(2):933–950CrossRef Pouch AM, Yushkevich PA, Jackson BM, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM (2012) Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound. Med Phys 39(2):933–950CrossRef
20.
Zurück zum Zitat Carnahan P, Ginty O, Moore J, Lasso A, Jolley MA, Herz C, Eskandari M, Bainbridge D, Peters TM (2019). Interactive-automatic segmentation and modelling of the mitral valve. In: International Conference on Functional Imaging and Modeling of the Heart. Springer, pp 397–404 Carnahan P, Ginty O, Moore J, Lasso A, Jolley MA, Herz C, Eskandari M, Bainbridge D, Peters TM (2019). Interactive-automatic segmentation and modelling of the mitral valve. In: International Conference on Functional Imaging and Modeling of the Heart. Springer, pp 397–404
21.
Zurück zum Zitat van Zon M, Veta M, Li S (2019). Automatic cardiac landmark localization by a recurrent neural network. In: Medical Imaging 2019: Image Processing. International Society for Optics and Photonics, p 1094916 van Zon M, Veta M, Li S (2019). Automatic cardiac landmark localization by a recurrent neural network. In: Medical Imaging 2019: Image Processing. International Society for Optics and Photonics, p 1094916
23.
Zurück zum Zitat Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA (2012) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623CrossRef Wang H, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA (2012) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623CrossRef
24.
Zurück zum Zitat Wang H, Yushkevich PA (2013). Multi-atlas segmentation without registration: a supervoxel-based approach. Paper presented at the Medical Image Computing and Computer Assisted Intervention, Wang H, Yushkevich PA (2013). Multi-atlas segmentation without registration: a supervoxel-based approach. Paper presented at the Medical Image Computing and Computer Assisted Intervention,
25.
Zurück zum Zitat Wang H, Yushkevich PA (2013). Groupwise segmentaiton with multi-atlas joint label fusion. Paper presented at the Medical Image Computing and Computer Assisted Intervention Wang H, Yushkevich PA (2013). Groupwise segmentaiton with multi-atlas joint label fusion. Paper presented at the Medical Image Computing and Computer Assisted Intervention
26.
Zurück zum Zitat Yushkevich PA, Zhang H, Gee JC (2006) Continuous medial representation for anatomical structures. IEEE Trans Med Imaging 25(12):1547–1564CrossRef Yushkevich PA, Zhang H, Gee JC (2006) Continuous medial representation for anatomical structures. IEEE Trans Med Imaging 25(12):1547–1564CrossRef
27.
Zurück zum Zitat Pouch AM, Tian S, Takebe M, Yuan J, Gorman R Jr, Cheung AT, Wang H, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA (2015) Medially constrained deformable modeling for segmentation of branching medial structures: application to aortic valve segmentation and morphometry. Med Image Anal 26(1):217–231. https://doi.org/10.1016/j.media.2015.09.003CrossRef Pouch AM, Tian S, Takebe M, Yuan J, Gorman R Jr, Cheung AT, Wang H, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA (2015) Medially constrained deformable modeling for segmentation of branching medial structures: application to aortic valve segmentation and morphometry. Med Image Anal 26(1):217–231. https://​doi.​org/​10.​1016/​j.​media.​2015.​09.​003CrossRef
28.
Zurück zum Zitat Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA, Sehgal CM (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18(1):118–129. https://doi.org/10.1016/j.media.2013.10.001CrossRef Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH 3rd, Gorman RC, Yushkevich PA, Sehgal CM (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18(1):118–129. https://​doi.​org/​10.​1016/​j.​media.​2013.​10.​001CrossRef
29.
Zurück zum Zitat Kalman RE (1960) A new approach to linear filtering and prediction problems. J basic Eng 82(series D):35–45MathSciNetCrossRef Kalman RE (1960) A new approach to linear filtering and prediction problems. J basic Eng 82(series D):35–45MathSciNetCrossRef
31.
Zurück zum Zitat Gorman JH III, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3):712–724CrossRef Gorman JH III, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3):712–724CrossRef
32.
Zurück zum Zitat Krishnamurthy G, Itoh A, Swanson JC, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB Jr (2009) Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J Biomech 42(16):2697–2701CrossRef Krishnamurthy G, Itoh A, Swanson JC, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB Jr (2009) Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J Biomech 42(16):2697–2701CrossRef
33.
Zurück zum Zitat Bavo A, Pouch AM, Degroote J, Vierendeels J, Gorman JH, Gorman RC, Segers P (2017) Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: comparison of three clinical cases. J Biomech 50:144–150CrossRef Bavo A, Pouch AM, Degroote J, Vierendeels J, Gorman JH, Gorman RC, Segers P (2017) Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: comparison of three clinical cases. J Biomech 50:144–150CrossRef
34.
Zurück zum Zitat Falahatpisheh A, Pahlevan NM, Kheradvar A (2015) Effect of the mitral valve’s anterior leaflet on axisymmetry of transmitral vortex ring. Ann Biomed Eng 43(10):2349–2360CrossRef Falahatpisheh A, Pahlevan NM, Kheradvar A (2015) Effect of the mitral valve’s anterior leaflet on axisymmetry of transmitral vortex ring. Ann Biomed Eng 43(10):2349–2360CrossRef
35.
Zurück zum Zitat Caballero A, Mao W, McKay R, Hahn RT, Sun W (2020). A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front Physiol 11 Caballero A, Mao W, McKay R, Hahn RT, Sun W (2020). A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front Physiol 11
36.
Zurück zum Zitat Jeyhani M, Shahriari S, Labrosse M (2018) Experimental investigation of left ventricular flow patterns after percutaneous edge-to-edge mitral valve repair. Artif Organs 42(5):516–524CrossRef Jeyhani M, Shahriari S, Labrosse M (2018) Experimental investigation of left ventricular flow patterns after percutaneous edge-to-edge mitral valve repair. Artif Organs 42(5):516–524CrossRef
37.
Zurück zum Zitat Du D, Jiang S, Wang Z, Hu Y, He Z (2014) Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair. Biomed Mater Eng 24(1):155–161 Du D, Jiang S, Wang Z, Hu Y, He Z (2014) Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair. Biomed Mater Eng 24(1):155–161
Metadaten
Titel
In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics
verfasst von
A. H. Aly
A. H. Aly
E. K. Lai
N. Yushkevich
R. H. Stoffers
J. H. Gorman IV
A. T. Cheung
J. H. Gorman III
R. C. Gorman
P. A. Yushkevich
A. M. Pouch
Publikationsdatum
17.08.2020
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 1/2021
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00656-8

Weitere Artikel der Ausgabe 1/2021

Experimental Mechanics 1/2021 Zur Ausgabe

Sp Iss: Experimental Advances in Cardiovascular Biomechanics

Nanoindentation of Calcified and Non-calcified Components of Atherosclerotic Tissues

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.