Skip to main content
Erschienen in: Rare Metals 3/2022

29.09.2021 | Original Article

InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering

verfasst von: Bo-Wen Zhang, Dan Fang, Xuan Fang, Hong-Bin Zhao, Deng-Kui Wang, Jin-Hua Li, Xiao-Hua Wang, Dong-Bo Wang

Erschienen in: Rare Metals | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ga-free InAs/InAsSb type-II superlattices (T2SL) have extensive application prospective in infrared photodetectors. Achieving higher operation temperature is critical to its commercial applications. Here, a fractional monolayer alloy method was used to grow InAsSb alloy with better controlled alloy composition. The as-grown T2SL gave eleven satellite peaks and a first satellite peak with a narrow full-width-half-maximum (FWHM) of 20.5 arcsec (1 arcsec= 0.01592°). Strain mapping results indicated limited Sb diffusion through the As-Sb exchange process at the interface. Moreover, unlike interface states caused by the As-Sb exchange effect, this relatively clear interface was distinctive with localized states with higher activation energies of the non-radiative recombination process ((18 ±1) meV and (84 ±12) meV at different temperature ranges), which means that this interface state introduced by fractional monolayer alloy growth method can effectively suppress Auger recombination process in T2SL. Through this interface engineering of InAs/InAsSb Type-II superlattice, it achieved detective photoluminescence (PL) signal with the center wavelength of 9 μm at 250K.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Rogalski A, Martyniuk P, Kopytko M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog Quantum Electron. 2019;68:100228.CrossRef Rogalski A, Martyniuk P, Kopytko M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog Quantum Electron. 2019;68:100228.CrossRef
[2]
Zurück zum Zitat Ren Y, Hao RT, Liu SJ, Guo J, Wang GW, Xu YQ, Niu ZC. High lattice match growth of InAsSb based materials by molecular beam epitaxy. Chin Phys Lett. 2016;33(12):128101.CrossRef Ren Y, Hao RT, Liu SJ, Guo J, Wang GW, Xu YQ, Niu ZC. High lattice match growth of InAsSb based materials by molecular beam epitaxy. Chin Phys Lett. 2016;33(12):128101.CrossRef
[3]
Zurück zum Zitat Affouda CA, Tomasulo S, Nolde JA, Vurgaftman I, Mahadik NA, Jackson EM, Twigg ME, Aifer EH. High absorption long wave infrared superlattices using metamorphic buffers. Appl Phys Lett. 2017;110(18):181107.CrossRef Affouda CA, Tomasulo S, Nolde JA, Vurgaftman I, Mahadik NA, Jackson EM, Twigg ME, Aifer EH. High absorption long wave infrared superlattices using metamorphic buffers. Appl Phys Lett. 2017;110(18):181107.CrossRef
[4]
Zurück zum Zitat Ting DZ, Soibel A, Khoshakhlagh A, Keo SA, Rafol SB, Höglund L, Luong EM, Fisher AM, Hill CJ, Gunapala SD. Development of InAs/InAsSb type II strained-layer superlattice unipolar barrier infrared detectors. J Electron Mater. 2019;48(10):6145.CrossRef Ting DZ, Soibel A, Khoshakhlagh A, Keo SA, Rafol SB, Höglund L, Luong EM, Fisher AM, Hill CJ, Gunapala SD. Development of InAs/InAsSb type II strained-layer superlattice unipolar barrier infrared detectors. J Electron Mater. 2019;48(10):6145.CrossRef
[5]
Zurück zum Zitat Delli E, Letka V, Hodgson PD, Repiso E, Hayton JP, Craig AP, Lu Q, Beanland R, Krier A, Marshall ARJ, Carrington PJ. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. Acs Photonics. 2019;6(2):538.CrossRef Delli E, Letka V, Hodgson PD, Repiso E, Hayton JP, Craig AP, Lu Q, Beanland R, Krier A, Marshall ARJ, Carrington PJ. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. Acs Photonics. 2019;6(2):538.CrossRef
[6]
Zurück zum Zitat Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L, Shao J. Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Jpn J Appl Phys. 2014;53(8):082201.CrossRef Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L, Shao J. Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Jpn J Appl Phys. 2014;53(8):082201.CrossRef
[7]
Zurück zum Zitat Steenbergen EH, Connelly BC, Metcalfe GD, Shen H, Wraback M, Lubyshev D, Qiu Y, Fastenau JM, Liu AWK, Elhamri S, Cellek OO, Zhang YH. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl Phys Lett. 2011;99(25):251110.CrossRef Steenbergen EH, Connelly BC, Metcalfe GD, Shen H, Wraback M, Lubyshev D, Qiu Y, Fastenau JM, Liu AWK, Elhamri S, Cellek OO, Zhang YH. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl Phys Lett. 2011;99(25):251110.CrossRef
[8]
Zurück zum Zitat Keen JA, Lane D, Kesaria M, Marshall ARJ, Krier A. InAs/InAsSb type-II strained-layer superlattices for mid-infrared LEDs. J Phys D. 2018;51(7):075103.CrossRef Keen JA, Lane D, Kesaria M, Marshall ARJ, Krier A. InAs/InAsSb type-II strained-layer superlattices for mid-infrared LEDs. J Phys D. 2018;51(7):075103.CrossRef
[9]
Zurück zum Zitat Lin Y, Wang D, Donetsky D, Belenky G, Hier H, Sarney WL, Svensson SP. Minority carrier lifetime in Beryllium-doped InAs/InAsSb strained layer superlattices. J Electron Mater. 2014;43(9):3184.CrossRef Lin Y, Wang D, Donetsky D, Belenky G, Hier H, Sarney WL, Svensson SP. Minority carrier lifetime in Beryllium-doped InAs/InAsSb strained layer superlattices. J Electron Mater. 2014;43(9):3184.CrossRef
[10]
Zurück zum Zitat Schuler-Sandy T, Klein B, Casias L, Mathews S, Kadlec C, Tian Z, Plis E, Myers S, Krishna S. Growth of InAs–InAsSb SLS through the use of digital alloys. J Cryst Growth. 2015;425:29.CrossRef Schuler-Sandy T, Klein B, Casias L, Mathews S, Kadlec C, Tian Z, Plis E, Myers S, Krishna S. Growth of InAs–InAsSb SLS through the use of digital alloys. J Cryst Growth. 2015;425:29.CrossRef
[11]
Zurück zum Zitat Ting DZ, Rafol SB, Keo SA, Nguyen J, Khoshakhlagh A, Soibel A, Hoglund L, Fisher AM, Luong EM, Mumolo JM, Liu JK, Gunapala SD. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon J. 2018;10(6):1.CrossRef Ting DZ, Rafol SB, Keo SA, Nguyen J, Khoshakhlagh A, Soibel A, Hoglund L, Fisher AM, Luong EM, Mumolo JM, Liu JK, Gunapala SD. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon J. 2018;10(6):1.CrossRef
[12]
Zurück zum Zitat Manyk T, Michalczewski K, Murawski K, Martyniuk P, Rutkowski J. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors. Sensors. 2019;19(8):1907.CrossRef Manyk T, Michalczewski K, Murawski K, Martyniuk P, Rutkowski J. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors. Sensors. 2019;19(8):1907.CrossRef
[13]
Zurück zum Zitat Ariyawansa G, Duran J, Reyner C, Scheihing J. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation. Micromachines. 2019;10(12):806.CrossRef Ariyawansa G, Duran J, Reyner C, Scheihing J. InAs/InAsSb strained-layer superlattice mid-wavelength infrared detector for high-temperature operation. Micromachines. 2019;10(12):806.CrossRef
[14]
Zurück zum Zitat Deng G, Chen D, Yang S, Yang C, Yuan J, Yang W, Zhang Y. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt Express. 2020;28(12):17611.CrossRef Deng G, Chen D, Yang S, Yang C, Yuan J, Yang W, Zhang Y. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt Express. 2020;28(12):17611.CrossRef
[15]
Zurück zum Zitat Ting DZ, Rafol SB, Khoshakhlagh A, Soibel A, Keo SA, Fisher AM, Pepper BJ, Hill CJ, Gunapala SD. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines. 2020;11(11):958.CrossRef Ting DZ, Rafol SB, Khoshakhlagh A, Soibel A, Keo SA, Fisher AM, Pepper BJ, Hill CJ, Gunapala SD. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines. 2020;11(11):958.CrossRef
[16]
Zurück zum Zitat Hoglund L, Ting DZ, Khoshakhlagh A, Soibel A, Hill CJ, Fisher A, Keo S, Gunapala SD. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl Phys Lett. 2013;103(22):5.CrossRef Hoglund L, Ting DZ, Khoshakhlagh A, Soibel A, Hill CJ, Fisher A, Keo S, Gunapala SD. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl Phys Lett. 2013;103(22):5.CrossRef
[17]
Zurück zum Zitat Olson BV, Grein CH, Kim JK, Kadlec EA, Klem JF, Hawkins SD, Shaner EA. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Appl Phys Lett. 2015;107(26):261104.CrossRef Olson BV, Grein CH, Kim JK, Kadlec EA, Klem JF, Hawkins SD, Shaner EA. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Appl Phys Lett. 2015;107(26):261104.CrossRef
[18]
Zurück zum Zitat Casias LK, Morath CP, Steenbergen EH, Umana-Membreno GA, Webster PT, Logan JV, Kim JK, Balakrishnan G, Faraone L, Krishna S. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Appl Phys Lett. 2020;116(18):182109.CrossRef Casias LK, Morath CP, Steenbergen EH, Umana-Membreno GA, Webster PT, Logan JV, Kim JK, Balakrishnan G, Faraone L, Krishna S. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Appl Phys Lett. 2020;116(18):182109.CrossRef
[19]
Zurück zum Zitat Olson BV, Kadlec EA, Kim JK, Klem JF, Hawkins SD, Shaner EA, Flatte ME. Intensity- and temperature-dependent carrier recombination in InAs/InAs1-xSbx Type-II superlattices. Phys Rev Appl. 2015;3(4):044010.CrossRef Olson BV, Kadlec EA, Kim JK, Klem JF, Hawkins SD, Shaner EA, Flatte ME. Intensity- and temperature-dependent carrier recombination in InAs/InAs1-xSbx Type-II superlattices. Phys Rev Appl. 2015;3(4):044010.CrossRef
[20]
Zurück zum Zitat Lee S, Jo HJ, Mathews S, Simon JA, Ronningen TJ, Kodati SH, Fink DR, Kim JS, Winslow M, Grein CH, Jones AH, Campbell JC, Krishna S. Investigation of carrier localization in InAs/AlSb type-II superlattice material system. Appl Phys Lett. 2019;115(21):5.CrossRef Lee S, Jo HJ, Mathews S, Simon JA, Ronningen TJ, Kodati SH, Fink DR, Kim JS, Winslow M, Grein CH, Jones AH, Campbell JC, Krishna S. Investigation of carrier localization in InAs/AlSb type-II superlattice material system. Appl Phys Lett. 2019;115(21):5.CrossRef
[21]
Zurück zum Zitat Du P, Fang X, Gong Q, Li J, Wang X. Fabrication and characterization of an InAs(Sb)/InxGa1–xAsySb1–y type I superlattice. Phys Status Solidi-Rapid Res Lett. 2019;13(12):1970045.CrossRef Du P, Fang X, Gong Q, Li J, Wang X. Fabrication and characterization of an InAs(Sb)/InxGa1–xAsySb1–y type I superlattice. Phys Status Solidi-Rapid Res Lett. 2019;13(12):1970045.CrossRef
[22]
Zurück zum Zitat Soibel A, Ting DZ, Rafol SB, Fisher AM, Keo SA, Khoshakhlagh A, Gunapala SD. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl Phys Letts. 2019;114(16):161103.CrossRef Soibel A, Ting DZ, Rafol SB, Fisher AM, Keo SA, Khoshakhlagh A, Gunapala SD. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl Phys Letts. 2019;114(16):161103.CrossRef
[23]
Zurück zum Zitat Fang X, Wei ZP, Chen R, Tang JL, Zhao HF, Zhang LG, Zhao DX, Fang D, Li JH, Fang F, Chu XY, Wang XH. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires. ACS Appl Mater Interfaces. 2015;7(19):10331.CrossRef Fang X, Wei ZP, Chen R, Tang JL, Zhao HF, Zhang LG, Zhao DX, Fang D, Li JH, Fang F, Chu XY, Wang XH. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires. ACS Appl Mater Interfaces. 2015;7(19):10331.CrossRef
[24]
Zurück zum Zitat Chen R, Ye QL, He TC, Ta VD, Ying YJ, Tay YY, Wu T, Sun HD. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett. 2013;13(2):734.CrossRef Chen R, Ye QL, He TC, Ta VD, Ying YJ, Tay YY, Wu T, Sun HD. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett. 2013;13(2):734.CrossRef
[25]
Zurück zum Zitat Yang XJ, Geng RW, Xie QM, Luo l, Li R. Physical properties of germanium crystal with antimony vacancy complexes by first-principle investigation. Chin J Rare Metals. 2019;43(6):631. Yang XJ, Geng RW, Xie QM, Luo l, Li R. Physical properties of germanium crystal with antimony vacancy complexes by first-principle investigation. Chin J Rare Metals. 2019;43(6):631.
[26]
Zurück zum Zitat Kong L, Gong J, Hu Q, Capitani F, Celeste A, Hattori T, Sano-Furukawa A, Li N, Yang W, Liu G, Mao HK. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect. Adv Funct Mater. 2021;31(9):2009131.CrossRef Kong L, Gong J, Hu Q, Capitani F, Celeste A, Hattori T, Sano-Furukawa A, Li N, Yang W, Liu G, Mao HK. Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect. Adv Funct Mater. 2021;31(9):2009131.CrossRef
[27]
Zurück zum Zitat Bae WK, Park YS, Lim J, Lee D, Padilha LA, McDaniel H, Robel I, Lee C, Pietryga JM, Klimov VI. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat Commun. 2013;4:2661.CrossRef Bae WK, Park YS, Lim J, Lee D, Padilha LA, McDaniel H, Robel I, Lee C, Pietryga JM, Klimov VI. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat Commun. 2013;4:2661.CrossRef
[28]
Zurück zum Zitat Park YS, Bae WK, Baker T, Lim J, Klimov VI. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015;15(11):7319.CrossRef Park YS, Bae WK, Baker T, Lim J, Klimov VI. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 2015;15(11):7319.CrossRef
[29]
Zurück zum Zitat Park YS, Lim J, Makarov NS, Klimov VI. Effect of interfacial alloying versus “Volume Scaling” on auger recombination in compositionally graded semiconductor quantum dots. Nano Lett. 2017;17(9):5607.CrossRef Park YS, Lim J, Makarov NS, Klimov VI. Effect of interfacial alloying versus “Volume Scaling” on auger recombination in compositionally graded semiconductor quantum dots. Nano Lett. 2017;17(9):5607.CrossRef
[30]
Zurück zum Zitat Altintas Y, Gungor K, Gao Y, Sak M, Quliyeva U, Bappi G, Mutlugun E, Sargent EH, Demir HV. Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells. ACS Nano. 2019;13(9):10662.CrossRef Altintas Y, Gungor K, Gao Y, Sak M, Quliyeva U, Bappi G, Mutlugun E, Sargent EH, Demir HV. Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells. ACS Nano. 2019;13(9):10662.CrossRef
[31]
Zurück zum Zitat Zhao J, Chen B, Wang F. Shedding light on the role of misfit strain in controlling core-shell nanocrystals. Adv Mater. 2020;32(46):e2004142.CrossRef Zhao J, Chen B, Wang F. Shedding light on the role of misfit strain in controlling core-shell nanocrystals. Adv Mater. 2020;32(46):e2004142.CrossRef
[32]
Zurück zum Zitat Dennis AM, Mangum BD, Piryatinski A, Park YS, Hannah DC, Casson JL, Williams DJ, Schaller RD, Htoon H, Hollingsworth JA. Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett. 2012;12(11):5545.CrossRef Dennis AM, Mangum BD, Piryatinski A, Park YS, Hannah DC, Casson JL, Williams DJ, Schaller RD, Htoon H, Hollingsworth JA. Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett. 2012;12(11):5545.CrossRef
[33]
Zurück zum Zitat Hollingsworth JA. Heterostructuring nanocrystal quantum dots toward intentional suppression of blinking and auger recombination. Che Mater. 2013;25(8):1318.CrossRef Hollingsworth JA. Heterostructuring nanocrystal quantum dots toward intentional suppression of blinking and auger recombination. Che Mater. 2013;25(8):1318.CrossRef
[34]
Zurück zum Zitat Gao X, Wei ZP, Zhao FH, Yang YH, Chen R, Fang X, Tang JL, Fang D, Wang DK, Li RX, Ge XT, Ma XH, Wang XH. Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy. Sci Rep. 2016;6:7. Gao X, Wei ZP, Zhao FH, Yang YH, Chen R, Fang X, Tang JL, Fang D, Wang DK, Li RX, Ge XT, Ma XH, Wang XH. Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy. Sci Rep. 2016;6:7.
[35]
Zurück zum Zitat Gao X, Wei Z, Fang X, Tang J, Fang D, Wang D, Chu X, Li J, Ma X, Wang X, Chen R. Effect of rapid thermal annealing on the optical properties of GaAsSb alloys. Opt Mater Express. 2017;7(6):1971.CrossRef Gao X, Wei Z, Fang X, Tang J, Fang D, Wang D, Chu X, Li J, Ma X, Wang X, Chen R. Effect of rapid thermal annealing on the optical properties of GaAsSb alloys. Opt Mater Express. 2017;7(6):1971.CrossRef
[36]
Zurück zum Zitat Ge XT, Wang DK, Gao X, Fang X, Niu SZ, Gao HY, Tang JL, Wang XH, Wei ZP, Chen R. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy. Phys Status Solidi-Rapid Res Lett. 2017;11(3):5. Ge XT, Wang DK, Gao X, Fang X, Niu SZ, Gao HY, Tang JL, Wang XH, Wei ZP, Chen R. Localized states emission in type-I GaAsSb/AlGaAs multiple quantum wells grown by molecular beam epitaxy. Phys Status Solidi-Rapid Res Lett. 2017;11(3):5.
[37]
Zurück zum Zitat Du P, Fang X, Zhao H, Fang D, Wang X. Mid- and long-infrared emission properties of In1–xGa1–xAsySb1−y quaternary alloy with type-II InAs/GaSb superlattice distribution. J Alloys Compd. 2020;847:156390.CrossRef Du P, Fang X, Zhao H, Fang D, Wang X. Mid- and long-infrared emission properties of In1–xGa1–xAsySb1−y quaternary alloy with type-II InAs/GaSb superlattice distribution. J Alloys Compd. 2020;847:156390.CrossRef
[38]
Zurück zum Zitat Haugan HJ, Brown GJ, Peoples JA. On the study of antimony incorporation in InAs/InAsSb superlattices for infrared sensing. J Vac Sci Technol B. 2017;35(2):02B107.CrossRef Haugan HJ, Brown GJ, Peoples JA. On the study of antimony incorporation in InAs/InAsSb superlattices for infrared sensing. J Vac Sci Technol B. 2017;35(2):02B107.CrossRef
[39]
Zurück zum Zitat Haugan HJ, Mahalingam K, Szmulowicz F, Brown GJ. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices. J Cryst Growth. 2016;436:134.CrossRef Haugan HJ, Mahalingam K, Szmulowicz F, Brown GJ. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices. J Cryst Growth. 2016;436:134.CrossRef
[40]
Zurück zum Zitat Zheng XT, Wang T, Wang P, Sun XX, Wang D, Chen ZY, Quach P, Wang YX, Yang XL, Xu FJ, Qin ZX, Yu TJ, Ge WK, Shen B, Wang XQ. Full-composition-graded InxGa1-xN films grown by molecular beam epitaxy. Appl Phys Lett. 2020;117(18):182101.CrossRef Zheng XT, Wang T, Wang P, Sun XX, Wang D, Chen ZY, Quach P, Wang YX, Yang XL, Xu FJ, Qin ZX, Yu TJ, Ge WK, Shen B, Wang XQ. Full-composition-graded InxGa1-xN films grown by molecular beam epitaxy. Appl Phys Lett. 2020;117(18):182101.CrossRef
[41]
Zurück zum Zitat Kim H, Meng Y, Klem JF, Hawkins SD, Kim JK, Zuo J-M. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb. J Appl Phys. 2018;123(16):161521.CrossRef Kim H, Meng Y, Klem JF, Hawkins SD, Kim JK, Zuo J-M. Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb. J Appl Phys. 2018;123(16):161521.CrossRef
[42]
Zurück zum Zitat Hüe F, Johnson CL, Lartigue-Korinek S, Wang G, Buseck PR, Hÿtch MJ. Calibration of projector lens distortions. J Electron Microsc. 2005;54(3):181. Hüe F, Johnson CL, Lartigue-Korinek S, Wang G, Buseck PR, Hÿtch MJ. Calibration of projector lens distortions. J Electron Microsc. 2005;54(3):181.
[43]
Zurück zum Zitat Singh SD, Porwal S, Sharma TK, Oak SM. Signature of optical absorption in highly strained and partially relaxed InP/GaAs type-II quantum well superlattice structures. J Appl Phys. 2012;112(9):093505.CrossRef Singh SD, Porwal S, Sharma TK, Oak SM. Signature of optical absorption in highly strained and partially relaxed InP/GaAs type-II quantum well superlattice structures. J Appl Phys. 2012;112(9):093505.CrossRef
[44]
Zurück zum Zitat Li R, Wei Z, Zhao F, Gao X, Fang X, Li Y, Wang X, Tang J, Fang D, Wang H, Chen R, Wang X. Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires. Nanophotonics. 2016;6(5):1093.CrossRef Li R, Wei Z, Zhao F, Gao X, Fang X, Li Y, Wang X, Tang J, Fang D, Wang H, Chen R, Wang X. Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires. Nanophotonics. 2016;6(5):1093.CrossRef
[45]
Zurück zum Zitat Lin Z-Y, Liu S, Steenbergen EH, Zhang Y-H. Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices. Appl Phys Lett. 2015;107(20):201107.CrossRef Lin Z-Y, Liu S, Steenbergen EH, Zhang Y-H. Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices. Appl Phys Lett. 2015;107(20):201107.CrossRef
[46]
Zurück zum Zitat Steenbergen EH, Massengale JA, Ariyawansa G, Zhang YH. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1-xSbx type-II superlattices. J Lumin. 2016;178:451.CrossRef Steenbergen EH, Massengale JA, Ariyawansa G, Zhang YH. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1-xSbx type-II superlattices. J Lumin. 2016;178:451.CrossRef
[47]
Zurück zum Zitat Webster PT, Riordan NA, Liu S, Steenbergen EH, Synowicki RA, Zhang YH, Johnson SR. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J Appl Phys. 2015;118(24):245706.CrossRef Webster PT, Riordan NA, Liu S, Steenbergen EH, Synowicki RA, Zhang YH, Johnson SR. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J Appl Phys. 2015;118(24):245706.CrossRef
[48]
Zurück zum Zitat Sun HD, Calvez S, Dawson MD, Gupta JA, Aers GC, Sproule GI. Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga(N)As quantum-well structures. Appl Phys Lett. 2006;89(10):301.CrossRef Sun HD, Calvez S, Dawson MD, Gupta JA, Aers GC, Sproule GI. Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga(N)As quantum-well structures. Appl Phys Lett. 2006;89(10):301.CrossRef
Metadaten
Titel
InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering
verfasst von
Bo-Wen Zhang
Dan Fang
Xuan Fang
Hong-Bin Zhao
Deng-Kui Wang
Jin-Hua Li
Xiao-Hua Wang
Dong-Bo Wang
Publikationsdatum
29.09.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01833-x

Weitere Artikel der Ausgabe 3/2022

Rare Metals 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.