Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.08.2012

Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods

verfasst von: Liam Paninski, Michael Vidne, Brian DePasquale, Daniel Gil Ferreira

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss methods for optimally inferring the synaptic inputs to an electrotonically compact neuron, given intracellular voltage-clamp or current-clamp recordings from the postsynaptic cell. These methods are based on sequential Monte Carlo techniques (“particle filtering”). We demonstrate, on model data, that these methods can recover the time course of excitatory and inhibitory synaptic inputs accurately on a single trial. Depending on the observation noise level, no averaging over multiple trials may be required. However, excitatory inputs are consistently inferred more accurately than inhibitory inputs at physiological resting potentials, due to the stronger driving force associated with excitatory conductances. Once these synaptic input time courses are recovered, it becomes possible to fit (via tractable convex optimization techniques) models describing the relationship between the sensory stimulus and the observed synaptic input. We develop both parametric and nonparametric expectation–maximization (EM) algorithms that consist of alternating iterations between these synaptic recovery and model estimation steps. We employ a fast, robust convex optimization-based method to effectively initialize the filter; these fast methods may be of independent interest. The proposed methods could be applied to better understand the balance between excitation and inhibition in sensory processing in vivo.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We assume V t is constant, or at least changes slowly enough that we may ignore capacitative effects, though these may potentially be included in the model as well.
 
2
This time constant τ i will typically be quite small. Mathematically speaking, it prevents any discontinuous jumps in the observed current, while physically, it may represent the lumped dynamics of the electrode and any non-space-clamped (electrotonically-distant) segments of the neuron.
 
3
In the case of Monte Carlo methods for computing the expectations needed in the EM algorithm, as in the particle filter employed here, the likelihood is no longer guaranteed to increase, due to random Monte Carlo error. However, given a sufficient number of samples (particles), the algorithm will still converge properly to a steady state, where the parameters “wobble” randomly around the location of the local likelihood maximum.
 
4
In the case of noisy or incomplete observations of the voltage V(t), we need to compute three additional sufficient statistics, \(E(V(t) | \theta^{i-1}, V^{\rm obs}_{0:T})\), \(E(V(t)^2 | \theta^{i-1}, V^{\rm obs}_{0:T})\), and \(E(V_{t-dt} V(t) | \theta^{i-1}, V^{\rm obs}_{0:T})\). These may be similarly estimated from the output of the particle filter, specifically Eq. (9). Finally, as noted in Huys et al. (2006) and Huys and Paninski (2009), it is possible to estimate the additional model parameters, (g l ,V l ,V E ,V I ), via straightforward quadratic programming methods, once the sufficient statistics are in hand. However, if g I and g E have free offset terms it is not possible to uniquely specify the leak parameters, (g l ,V l ), unless observations are made at a wide range of voltages. If only a single voltage is observed, then there are more free parameters than data points and the model is not uniquely identifiable.
 
5
It is important to make a note about the errorbars computed here. These are estimates of the posterior standard deviation \(Var(g_t | V^{\rm obs}_{0:T}, \hat \theta)^{1/2}\), where we have conditioned on our estimate of the parameter θ. Clearly, this will be an underestimate of our true posterior uncertainty, which should also incorporate our uncertainty about \(\hat \theta\). It is possible to employ Markov chain Monte Carlo methods to incorporate this additional uncertainty about \(\hat \theta\) (Gelman et al. 2003), but we have not yet pursued this direction.
 
Literatur
Zurück zum Zitat Ahmadian, Y., Packer, A., Yuste, R., & Paninski, L. (2011). Designing optimal stimuli to control neuronal spike timing. Journal of Neurophysiology, 106, 1038–1053.PubMedCrossRef Ahmadian, Y., Packer, A., Yuste, R., & Paninski, L. (2011). Designing optimal stimuli to control neuronal spike timing. Journal of Neurophysiology, 106, 1038–1053.PubMedCrossRef
Zurück zum Zitat Anderson, J., Carandini, M., & Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84(2), 909.PubMed Anderson, J., Carandini, M., & Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84(2), 909.PubMed
Zurück zum Zitat Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. PNAS, 103(47), 17961–17966.PubMedCrossRef Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. PNAS, 103(47), 17961–17966.PubMedCrossRef
Zurück zum Zitat Badel, L., Richardson, M., & Gerstner, W. (2005). Dependence of the spike-triggered average voltage on membrane response properties. Neurocomputing, 69, 1062–1065.CrossRef Badel, L., Richardson, M., & Gerstner, W. (2005). Dependence of the spike-triggered average voltage on membrane response properties. Neurocomputing, 69, 1062–1065.CrossRef
Zurück zum Zitat Bickel, P., Li, B., & Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. IMS Collections 2008 (Vol. 3, pp. 318–329). Bickel, P., Li, B., & Bengtsson, T. (2008). Sharp failure rates for the bootstrap particle filter in high dimensions. IMS Collections 2008 (Vol. 3, pp. 318–329).
Zurück zum Zitat Borg-Graham, L., Monier, C., & Fregnac, Y. (1996). Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. Journal of Physiology-Paris, 90(3–4), 185–188.CrossRef Borg-Graham, L., Monier, C., & Fregnac, Y. (1996). Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. Journal of Physiology-Paris, 90(3–4), 185–188.CrossRef
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Oxford University Press. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Oxford University Press.
Zurück zum Zitat Brette, R., Piwkowska, Z., Rudolph, M., Bal, T., & Destexhe, A. (2007). A nonparametric electrode model for intracellular recording. Neurocomputing, 70, 1597–1601.CrossRef Brette, R., Piwkowska, Z., Rudolph, M., Bal, T., & Destexhe, A. (2007). A nonparametric electrode model for intracellular recording. Neurocomputing, 70, 1597–1601.CrossRef
Zurück zum Zitat Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–1907.PubMedCrossRef Brockwell, A., Rojas, A., & Kass, R. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–1907.PubMedCrossRef
Zurück zum Zitat Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967.PubMedCrossRef Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967.PubMedCrossRef
Zurück zum Zitat Casella, G., & Berger, R. (2001). Statistical inference. Duxbury Press. Casella, G., & Berger, R. (2001). Statistical inference. Duxbury Press.
Zurück zum Zitat Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058–14062.CrossRef Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058–14062.CrossRef
Zurück zum Zitat Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
Zurück zum Zitat Dombeck, D., Blanchard-Desce, M., & Webb, W. (2004). Optical recording of action potentials with second-harmonic generation microscopy. The Journal of Neuroscience, 24(4), 999.PubMedCrossRef Dombeck, D., Blanchard-Desce, M., & Webb, W. (2004). Optical recording of action potentials with second-harmonic generation microscopy. The Journal of Neuroscience, 24(4), 999.PubMedCrossRef
Zurück zum Zitat Douc, R., Cappe, O., & Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In Proc. 4th int. symp. image and signal processing and analyis. Douc, R., Cappe, O., & Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In Proc. 4th int. symp. image and signal processing and analyis.
Zurück zum Zitat Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao–Blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the sixteenth conference on uncertainty in artificial intelligence (pp. 176–183). Citeseer. Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao–Blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the sixteenth conference on uncertainty in artificial intelligence (pp. 176–183). Citeseer.
Zurück zum Zitat Doucet, A., De Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. Springer. Doucet, A., De Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. Springer.
Zurück zum Zitat Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419–428.PubMedCrossRef Ergun, A., Barbieri, R., Eden, U., Wilson, M., & Brown, E. (2007). Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54, 419–428.PubMedCrossRef
Zurück zum Zitat Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2003). Bayesian data analysis. CRC Press. Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2003). Bayesian data analysis. CRC Press.
Zurück zum Zitat Godsill, S., Doucet, A., & West, M. (2004). Monte Carlo smoothing for non-linear time series. Journal of the American Statistical Association, 99, 156–168.CrossRef Godsill, S., Doucet, A., & West, M. (2004). Monte Carlo smoothing for non-linear time series. Journal of the American Statistical Association, 99, 156–168.CrossRef
Zurück zum Zitat Green, P., & Silverman, B. (1994). Nonparametric regression and generalized linear models. CRC Press. Green, P., & Silverman, B. (1994). Nonparametric regression and generalized linear models. CRC Press.
Zurück zum Zitat Huys, Q., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLOS Computational Biology, 5, e1000379.PubMedCrossRef Huys, Q., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLOS Computational Biology, 5, e1000379.PubMedCrossRef
Zurück zum Zitat Huys, Q., Ahrens, M., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96, 872–890.PubMedCrossRef Huys, Q., Ahrens, M., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96, 872–890.PubMedCrossRef
Zurück zum Zitat Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. Advances in Neural Information Processing Systems, 15, 1359–1366. Kelly, R., & Lee, T. (2004). Decoding V1 neuronal activity using particle filtering with Volterra kernels. Advances in Neural Information Processing Systems, 15, 1359–1366.
Zurück zum Zitat Koch, C. (1999). Biophysics of computation. Oxford University Press. Koch, C. (1999). Biophysics of computation. Oxford University Press.
Zurück zum Zitat Kotecha, J. H., & Djuric, P. M. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51, 2592–2601.CrossRef Kotecha, J. H., & Djuric, P. M. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51, 2592–2601.CrossRef
Zurück zum Zitat Koyama, S., & Paninski, L. (2010). Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29(1), 89–105.PubMedCrossRef Koyama, S., & Paninski, L. (2010). Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29(1), 89–105.PubMedCrossRef
Zurück zum Zitat McCullagh, P., & Nelder, J. (1989). Generalized linear models. London: Chapman and Hall. McCullagh, P., & Nelder, J. (1989). Generalized linear models. London: Chapman and Hall.
Zurück zum Zitat Murphy, G. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron, 52, 511–524.PubMedCrossRef Murphy, G. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron, 52, 511–524.PubMedCrossRef
Zurück zum Zitat Nuriya, M., Jiang, J., Nemet, B., Eisenthal, K., & Yuste, R. (2006). Imaging membrane potential in dendritic spines. PNAS, 103, 786–790.PubMedCrossRef Nuriya, M., Jiang, J., Nemet, B., Eisenthal, K., & Yuste, R. (2006). Imaging membrane potential in dendritic spines. PNAS, 103, 786–790.PubMedCrossRef
Zurück zum Zitat Olsen, R. J. (1978). Note on the uniqueness of the maximum likelihood estimator for the tobit model. Econometrica, 46, 1211–1215.CrossRef Olsen, R. J. (1978). Note on the uniqueness of the maximum likelihood estimator for the tobit model. Econometrica, 46, 1211–1215.CrossRef
Zurück zum Zitat Orme, C. D., & Ruud, P. A. (2002). On the uniqueness of the maximum likelihood estimator. Economics Letters, 75, 209–217.CrossRef Orme, C. D., & Ruud, P. A. (2002). On the uniqueness of the maximum likelihood estimator. Economics Letters, 75, 209–217.CrossRef
Zurück zum Zitat Paninski, L. (2006a). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of Computational Neuroscience, 21, 71–87.PubMedCrossRef Paninski, L. (2006a). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of Computational Neuroscience, 21, 71–87.PubMedCrossRef
Zurück zum Zitat Paninski, L. (2006b). The spike-triggered average of the integrate-and-fire cell driven by Gaussian white noise. Neural Computation, 18, 2592–2616.PubMedCrossRef Paninski, L. (2006b). The spike-triggered average of the integrate-and-fire cell driven by Gaussian white noise. Neural Computation, 18, 2592–2616.PubMedCrossRef
Zurück zum Zitat Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Progress in brain research. Elsevier. Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Progress in brain research. Elsevier.
Zurück zum Zitat Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29(1), 107–126.PubMedCrossRef Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29(1), 107–126.PubMedCrossRef
Zurück zum Zitat Peña, J.-L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11787–11792.PubMedCrossRef Peña, J.-L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11787–11792.PubMedCrossRef
Zurück zum Zitat Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef
Zurück zum Zitat Pitt, M., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599. Pitt, M., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.
Zurück zum Zitat Pospischil, M., Piwkowska, Z., Rudolph, M., Bal, T., & Destexhe, A. (2007). Calculating event-triggered average synaptic conductances from the membrane potential. Journal of Neurophysiology, 97, 2544–2552.PubMedCrossRef Pospischil, M., Piwkowska, Z., Rudolph, M., Bal, T., & Destexhe, A. (2007). Calculating event-triggered average synaptic conductances from the membrane potential. Journal of Neurophysiology, 97, 2544–2552.PubMedCrossRef
Zurück zum Zitat Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge University Press. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C. Cambridge University Press.
Zurück zum Zitat Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45, 133–145.PubMedCrossRef Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45, 133–145.PubMedCrossRef
Zurück zum Zitat Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.CrossRef Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.CrossRef
Zurück zum Zitat Richardson, M. J. E., & Gerstner, W. (2005). Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Computation, 17(4), 923–947.PubMedCrossRef Richardson, M. J. E., & Gerstner, W. (2005). Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Computation, 17(4), 923–947.PubMedCrossRef
Zurück zum Zitat Sawtell, N. (2010). Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron, 66(4), 573–584.PubMedCrossRef Sawtell, N. (2010). Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron, 66(4), 573–584.PubMedCrossRef
Zurück zum Zitat Simoncelli, E., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In The cognitive neurosciences (3rd ed.). MIT Press. Simoncelli, E., Paninski, L., Pillow, J., & Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In The cognitive neurosciences (3rd ed.). MIT Press.
Zurück zum Zitat Vogelstein, J., Watson, B., Packer, A., Jedynak, B., Yuste, R., & Paninski, L. (2009). Model-based optimal inference of spike times and calcium dynamics given noisy and intermittent calcium-fluorescence imaging. Biophysical Journal, 97, 636–655.PubMedCrossRef Vogelstein, J., Watson, B., Packer, A., Jedynak, B., Yuste, R., & Paninski, L. (2009). Model-based optimal inference of spike times and calcium dynamics given noisy and intermittent calcium-fluorescence imaging. Biophysical Journal, 97, 636–655.PubMedCrossRef
Zurück zum Zitat Vogelstein, J., Packer, A., Machado, T., Sippy, T., Babadi, B., Yuste, R., et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104(6), 3691.PubMedCrossRef Vogelstein, J., Packer, A., Machado, T., Sippy, T., Babadi, B., Yuste, R., et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104(6), 3691.PubMedCrossRef
Zurück zum Zitat Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F., et al. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron, 55, 465–478.PubMedCrossRef Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F., et al. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron, 55, 465–478.PubMedCrossRef
Zurück zum Zitat Wehr, M., & Zador, A. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426, 442–446.PubMedCrossRef Wehr, M., & Zador, A. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426, 442–446.PubMedCrossRef
Zurück zum Zitat Xie, R., Gittelman, J., Pollak, G. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. The Journal of Neuroscience, 27(35), 9469.PubMedCrossRef Xie, R., Gittelman, J., Pollak, G. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. The Journal of Neuroscience, 27(35), 9469.PubMedCrossRef
Metadaten
Titel
Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods
verfasst von
Liam Paninski
Michael Vidne
Brian DePasquale
Daniel Gil Ferreira
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0371-7

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner