Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.08.2012

Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons

verfasst von: Wafa Soofi, Santiago Archila, Astrid A. Prinz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuronal networks produce reliable functional output throughout the lifespan of an animal despite ceaseless molecular turnover and a constantly changing environment. Central pattern generators, such as those of the crustacean stomatogastric ganglion (STG), are able to robustly maintain their functionality over a wide range of burst periods. Previous experimental work involving extracellular recordings of the pyloric pattern of the STG has demonstrated that as the burst period varies, the inter-neuronal delays are altered proportionally, resulting in burst phases that are roughly invariant. The question whether spike delays within bursts are also proportional to pyloric period has not been explored in detail. The mechanism by which the pyloric neurons accomplish phase maintenance is currently not obvious. Previous studies suggest that the co-regulation of certain ion channel properties may play a role in governing neuronal activity. Here, we observed in long-term recordings of the pyloric rhythm that spike delays can vary proportionally with burst period, so that spike phase is maintained. We then used a conductance-based model neuron to determine whether co-varying ionic membrane conductances results in neural output that emulates the experimentally observed phenomenon of spike phase maintenance. Next, we utilized a model neuron database to determine whether conductance correlations exist in model neuron populations with highly maintained spike phases. We found that co-varying certain conductances, including the sodium and transient calcium conductance pair, causes the model neuron to maintain a specific spike phase pattern. Results indicate a possible relationship between conductance co-regulation and phase maintenance in STG neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. Journal of Neuroscience, 30(25), 8637–8649.PubMedCrossRef Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. Journal of Neuroscience, 30(25), 8637–8649.PubMedCrossRef
Zurück zum Zitat Baro, D. J., Levini, R. M., Kim, M. T., Willms, A. R., Lanning, C. C., Rodriguez, H. E., et al. (1997). Quantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. Journal of Neuroscience, 17(17), 6597–6610.PubMed Baro, D. J., Levini, R. M., Kim, M. T., Willms, A. R., Lanning, C. C., Rodriguez, H. E., et al. (1997). Quantitative single-cell-reverse transcription-PCR demonstrates that A-current magnitude varies as a linear function of shal gene expression in identified stomatogastric neurons. Journal of Neuroscience, 17(17), 6597–6610.PubMed
Zurück zum Zitat Brochini, L., Carelli, P. V., & Pinto, R. D. (2011). Single synapse information coding in intraburst spike patterns of central pattern generator motor neurons. Journal of Neuroscience, 31(34), 12297–12306.PubMedCrossRef Brochini, L., Carelli, P. V., & Pinto, R. D. (2011). Single synapse information coding in intraburst spike patterns of central pattern generator motor neurons. Journal of Neuroscience, 31(34), 12297–12306.PubMedCrossRef
Zurück zum Zitat Bucher, D., Prinz, A. A., & Marder, E. (2005). Animal-to-animal variability in motor pattern production in adults and during growth. Journal of Neuroscience, 25(7), 1611–1619.PubMedCrossRef Bucher, D., Prinz, A. A., & Marder, E. (2005). Animal-to-animal variability in motor pattern production in adults and during growth. Journal of Neuroscience, 25(7), 1611–1619.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT Press.
Zurück zum Zitat Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed
Zurück zum Zitat Golowasch, J., Goldman, M. S., Abbott, L. F., & Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of Neurophysiology, 87(2), 1129–1131.PubMed Golowasch, J., Goldman, M. S., Abbott, L. F., & Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of Neurophysiology, 87(2), 1129–1131.PubMed
Zurück zum Zitat Graubard, K. (1978). Synaptic transmission without action potentials: input–output properties of a nonspiking presynaptic neuron. Journal of Neurophysiology, 41(4), 1014–1025.PubMed Graubard, K. (1978). Synaptic transmission without action potentials: input–output properties of a nonspiking presynaptic neuron. Journal of Neurophysiology, 41(4), 1014–1025.PubMed
Zurück zum Zitat Hooper, S. L. (1997a). Phase maintenance in the pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion. Journal of Computational Neuroscience, 4(3), 191–205.PubMedCrossRef Hooper, S. L. (1997a). Phase maintenance in the pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion. Journal of Computational Neuroscience, 4(3), 191–205.PubMedCrossRef
Zurück zum Zitat Hooper, S. L. (1997b). The pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion comprises two phase-maintaining subsets. Journal of Computational Neuroscience, 4(3), 207–219.PubMedCrossRef Hooper, S. L. (1997b). The pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion comprises two phase-maintaining subsets. Journal of Computational Neuroscience, 4(3), 207–219.PubMedCrossRef
Zurück zum Zitat Hooper, S. L., & Weaver, A. L. (2000). Motor neuron activity is often insufficient to predict motor response. Current Opinion in Neurobiology, 10(6), 676–682.PubMedCrossRef Hooper, S. L., & Weaver, A. L. (2000). Motor neuron activity is often insufficient to predict motor response. Current Opinion in Neurobiology, 10(6), 676–682.PubMedCrossRef
Zurück zum Zitat Huguenard, J. R., & McCormick, D. A. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology, 68(4), 1373–1383.PubMed Huguenard, J. R., & McCormick, D. A. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology, 68(4), 1373–1383.PubMed
Zurück zum Zitat Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.PubMedCrossRef Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.PubMedCrossRef
Zurück zum Zitat Lago-Fernandez, L. F. (2007). Spike alignment in bursting neurons. Neurocomputing, 70, 1788–1791.CrossRef Lago-Fernandez, L. F. (2007). Spike alignment in bursting neurons. Neurocomputing, 70, 1788–1791.CrossRef
Zurück zum Zitat Latorre, R., Rodriguez, F. B., & Varona, P. (2006). Neural signatures: multiple coding in spiking-bursting cells. Biological Cybernetics, 95(2), 169–183.PubMedCrossRef Latorre, R., Rodriguez, F. B., & Varona, P. (2006). Neural signatures: multiple coding in spiking-bursting cells. Biological Cybernetics, 95(2), 169–183.PubMedCrossRef
Zurück zum Zitat LeMasson, G., Marder, E., & Abbott, L. F. (1993). Activity-dependent regulation of conductances in model neurons. Science, 259(5103), 1915–1917.PubMedCrossRef LeMasson, G., Marder, E., & Abbott, L. F. (1993). Activity-dependent regulation of conductances in model neurons. Science, 259(5103), 1915–1917.PubMedCrossRef
Zurück zum Zitat Levitan, I. B. (1988). Modulation of ion channels in neurons and other cells. Annual Review of Neuroscience, 11, 119–136.PubMedCrossRef Levitan, I. B. (1988). Modulation of ion channels in neurons and other cells. Annual Review of Neuroscience, 11, 119–136.PubMedCrossRef
Zurück zum Zitat Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 2309–2320.PubMed Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 2309–2320.PubMed
Zurück zum Zitat MacLean, J. N., Zhang, Y., Johnson, B. R., & Harris-Warrick, R. M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron, 37(1), 109–120.PubMedCrossRef MacLean, J. N., Zhang, Y., Johnson, B. R., & Harris-Warrick, R. M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron, 37(1), 109–120.PubMedCrossRef
Zurück zum Zitat MacLean, J. N., Zhang, Y., Goeritz, M. L., Casey, R., Oliva, R., Guckenheimer, J., et al. (2005). Activity-independent coregulation of IA and Ih in rhythmically active neurons. Journal of Neurophysiology, 94(5), 3601–3617.PubMedCrossRef MacLean, J. N., Zhang, Y., Goeritz, M. L., Casey, R., Oliva, R., Guckenheimer, J., et al. (2005). Activity-independent coregulation of IA and Ih in rhythmically active neurons. Journal of Neurophysiology, 94(5), 3601–3617.PubMedCrossRef
Zurück zum Zitat Marder, E. (1997). Computational dynamics in rhythmic neural circuits. The Neuroscientist, 3, 295–302. Marder, E. (1997). Computational dynamics in rhythmic neural circuits. The Neuroscientist, 3, 295–302.
Zurück zum Zitat Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.PubMedCrossRef Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.PubMedCrossRef
Zurück zum Zitat Morris, L. G., & Hooper, S. L. (1997). Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: spike number- versus spike frequency-dependent domains. Journal of Neuroscience, 17(15), 5956–5971.PubMed Morris, L. G., & Hooper, S. L. (1997). Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: spike number- versus spike frequency-dependent domains. Journal of Neuroscience, 17(15), 5956–5971.PubMed
Zurück zum Zitat Morris, L. G., Thuma, J. B., & Hooper, S. L. (2000). Muscles express motor patterns of non-innervating neural networks by filtering broad-band input. Nature Neuroscience, 3(3), 245–250.PubMedCrossRef Morris, L. G., Thuma, J. B., & Hooper, S. L. (2000). Muscles express motor patterns of non-innervating neural networks by filtering broad-band input. Nature Neuroscience, 3(3), 245–250.PubMedCrossRef
Zurück zum Zitat Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015.CrossRef Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998–4015.CrossRef
Zurück zum Zitat Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. Journal of Neuroscience, 23(3), 943–954. Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. Journal of Neuroscience, 23(3), 943–954.
Zurück zum Zitat Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.PubMedCrossRef Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.PubMedCrossRef
Zurück zum Zitat Raper, J. A. (1979). Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science, 205(4403), 304–306.PubMedCrossRef Raper, J. A. (1979). Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science, 205(4403), 304–306.PubMedCrossRef
Zurück zum Zitat Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362.PubMedCrossRef Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362.PubMedCrossRef
Zurück zum Zitat Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191.PubMedCrossRef Schulz, D. J., Goaillard, J. M., & Marder, E. E. (2007). Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187–13191.PubMedCrossRef
Zurück zum Zitat Selverston, A. I. (2010). Invertebrate central pattern generator circuits. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1551), 2329–2345.PubMedCrossRef Selverston, A. I. (2010). Invertebrate central pattern generator circuits. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1551), 2329–2345.PubMedCrossRef
Zurück zum Zitat Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology, 47, 29–48.PubMedCrossRef Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review of Physiology, 47, 29–48.PubMedCrossRef
Zurück zum Zitat Swensen, A. M., & Bean, B. P. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. Journal of Neuroscience, 23(29), 9650–9663.PubMed Swensen, A. M., & Bean, B. P. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. Journal of Neuroscience, 23(29), 9650–9663.PubMed
Zurück zum Zitat Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.PubMedCrossRef Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.PubMedCrossRef
Zurück zum Zitat Szucs, A., Pinto, R. D., Rabinovich, M. I., Abarbanel, H. D., & Selverston, A. I. (2003). Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. Journal of Neurophysiology, 89(3), 1363–1377.PubMedCrossRef Szucs, A., Pinto, R. D., Rabinovich, M. I., Abarbanel, H. D., & Selverston, A. I. (2003). Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. Journal of Neurophysiology, 89(3), 1363–1377.PubMedCrossRef
Zurück zum Zitat Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed
Metadaten
Titel
Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons
verfasst von
Wafa Soofi
Santiago Archila
Astrid A. Prinz
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0375-3

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner