Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.08.2012

The effects of DBS patterns on basal ganglia activity and thalamic relay

A computational study

verfasst von: Rahul Agarwal, Sridevi V. Sarma

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thalamic neurons receive inputs from cortex and their responses are modulated by the basal ganglia (BG). This modulation is necessary to properly relay cortical inputs back to cortex and downstream to the brain stem when movements are planned. In Parkinson’s disease (PD), the BG input to thalamus becomes pathological and relay of motor-related cortical inputs is compromised, thereby impairing movements. However, high frequency (HF) deep brain stimulation (DBS) may be used to restore relay reliability, thereby restoring movements in PD patients. Although therapeutic, HF stimulation consumes significant power forcing surgical battery replacements, and may cause adverse side effects. Here, we used a biophysical-based model of the BG-Thalamus motor loop in both healthy and PD conditions to assess whether low frequency stimulation can suppress pathological activity in PD and enable the thalamus to reliably relay movement-related cortical inputs. We administered periodic pulse train DBS waveforms to the sub-thalamic nucleus (STN) with frequencies ranging from 0–140 Hz, and computed statistics that quantified pathological bursting, oscillations, and synchronization in the BG as well as thalamic relay of cortical inputs. We found that none of the frequencies suppressed all pathological activity in BG, though the HF waveforms recovered thalamic reliability. Our rigorous study, however, led us to a novel DBS strategy involving low frequency multi-input phase-shifted DBS, which successfully suppressed pathological symptoms in all BG nuclei and enabled reliable thalamic relay. The neural restoration remained robust to changes in the model parameters characterizing early to late PD stages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agarwal, R., & Sarma, S. V. (2011). An analytical study of relay neuron’s reliability: Dependence on input and model parameters. In Proceedings of the 33rd IEEE EMBS conference (pp. 2426–2429). Agarwal, R., & Sarma, S. V. (2011). An analytical study of relay neuron’s reliability: Dependence on input and model parameters. In Proceedings of the 33rd IEEE EMBS conference (pp. 2426–2429).
Zurück zum Zitat Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.PubMedCrossRef Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.PubMedCrossRef
Zurück zum Zitat Amirnovin, R., Williams, Z. M., Cosgrove, G. R., & Eskandar, E. N. (2004). Visually guided movements suppress subthalamic oscillations in Parkinsons disease patients. Journal of Neuroscience, 24, 11302–11306.PubMedCrossRef Amirnovin, R., Williams, Z. M., Cosgrove, G. R., & Eskandar, E. N. (2004). Visually guided movements suppress subthalamic oscillations in Parkinsons disease patients. Journal of Neuroscience, 24, 11302–11306.PubMedCrossRef
Zurück zum Zitat Anheim, M., Fraix, V., Chabards, S., Krack, P., Benabid, A. L., & Pollak, P. (2007). Lifetime of itrel ii pulse generators for subthalamic nucleus stimulation in Parkinson’s disease. Movement Disorders, 22, 2436–2439.PubMedCrossRef Anheim, M., Fraix, V., Chabards, S., Krack, P., Benabid, A. L., & Pollak, P. (2007). Lifetime of itrel ii pulse generators for subthalamic nucleus stimulation in Parkinson’s disease. Movement Disorders, 22, 2436–2439.PubMedCrossRef
Zurück zum Zitat Aybek, S., & Vingerhoets, F. J. G. (2000). Does deep brain stimulation of the subthalamic nucleus in Parkinson’s disease affect cognition. Lancet Neurology, 5, 578–588. Aybek, S., & Vingerhoets, F. J. G. (2000). Does deep brain stimulation of the subthalamic nucleus in Parkinson’s disease affect cognition. Lancet Neurology, 5, 578–588.
Zurück zum Zitat Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental Parkinsonism by lesions book series mathematics in industry (Vol. 8). Berlin Heidelberg: Springer. Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of experimental Parkinsonism by lesions book series mathematics in industry (Vol. 8). Berlin Heidelberg: Springer.
Zurück zum Zitat Bokil, H., Pesaran, B., Andersen, A. R., & Mitra, P. P. (2006a). A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering, 53, 1678–1687.PubMedCrossRef Bokil, H., Pesaran, B., Andersen, A. R., & Mitra, P. P. (2006a). A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering, 53, 1678–1687.PubMedCrossRef
Zurück zum Zitat Bokil, H., Purpura, K., Schofflen, J. M., Thompson, D., Pesaran, B., & Mitra, P. P. (2006b). Comparing spectra and coherencesfor groups of unequal size. Journal of Neuroscience Methods, 159, 337–345.PubMedCrossRef Bokil, H., Purpura, K., Schofflen, J. M., Thompson, D., Pesaran, B., & Mitra, P. P. (2006b). Comparing spectra and coherencesfor groups of unequal size. Journal of Neuroscience Methods, 159, 337–345.PubMedCrossRef
Zurück zum Zitat Brown, P. (2003). Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18, 357–363.PubMedCrossRef Brown, P. (2003). Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18, 357–363.PubMedCrossRef
Zurück zum Zitat Cagnan, H., Meijer, H. G. E., van Gils, S. A., Krupa, M., Heida, T., Rudolph, M., et al. (2009). Frequency-selectivity of a thalamocortical relay neuron during Parkinsons disease and deep brain stimulation: A computational study. European Journal of Neuroscience, 30, 1306–1317.PubMedCrossRef Cagnan, H., Meijer, H. G. E., van Gils, S. A., Krupa, M., Heida, T., Rudolph, M., et al. (2009). Frequency-selectivity of a thalamocortical relay neuron during Parkinsons disease and deep brain stimulation: A computational study. European Journal of Neuroscience, 30, 1306–1317.PubMedCrossRef
Zurück zum Zitat Cooper, S. E., Kuncel, A. M., Wolgamuth, B. R., Rezai, A. R., & Gril, W. M. (2008). A model predicting optimal parameters for deep brain stimulation in essential tremor. Journal of Clinical Neurophysiology, 25(5), 265–273.PubMedCrossRef Cooper, S. E., Kuncel, A. M., Wolgamuth, B. R., Rezai, A. R., & Gril, W. M. (2008). A model predicting optimal parameters for deep brain stimulation in essential tremor. Journal of Clinical Neurophysiology, 25(5), 265–273.PubMedCrossRef
Zurück zum Zitat Davie, C. A. (2008). A review of Parkinson’s disease. British Medical Bulletin, 86(1), 109–127.PubMedCrossRef Davie, C. A. (2008). A review of Parkinson’s disease. British Medical Bulletin, 86(1), 109–127.PubMedCrossRef
Zurück zum Zitat Dorval, A. D., Panjwani, N., Qi, R. Y., & Grill, W. M. (2009). Deep brain stimulation that abolishes Parkinsonian activity in basal ganglia improves thalamic relay fidelity in a computational circuit. In 31st annual international conference of the IEEE EMBS. Dorval, A. D., Panjwani, N., Qi, R. Y., & Grill, W. M. (2009). Deep brain stimulation that abolishes Parkinsonian activity in basal ganglia improves thalamic relay fidelity in a computational circuit. In 31st annual international conference of the IEEE EMBS.
Zurück zum Zitat Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the mptp-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.PubMedCrossRef Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the mptp-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (2002). Simulating, analyzing and animating dynamical systems. Philadelphia: SIAM Press.CrossRef Ermentrout, B. (2002). Simulating, analyzing and animating dynamical systems. Philadelphia: SIAM Press.CrossRef
Zurück zum Zitat Feng, X., Greenwald, B., Rabitz, H., Shea-Brownxy, E., & Kosutz, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinsons disease: Concepts and lessons from a computational model. Journal of Neuroengineering, 4, L14–L21.CrossRef Feng, X., Greenwald, B., Rabitz, H., Shea-Brownxy, E., & Kosutz, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinsons disease: Concepts and lessons from a computational model. Journal of Neuroengineering, 4, L14–L21.CrossRef
Zurück zum Zitat Galvan, A., & Wichmann, T. (2008). Pathophysiology of Parkinsonism. Clinical Neurophysiology, 119(1), 1459–1474.PubMedCrossRef Galvan, A., & Wichmann, T. (2008). Pathophysiology of Parkinsonism. Clinical Neurophysiology, 119(1), 1459–1474.PubMedCrossRef
Zurück zum Zitat Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies in deep brain stmulation protocols in data-driven computational models. Journal of Neurophysiology, 99, 1477–1492.PubMedCrossRef Guo, Y., Rubin, J. E., McIntyre, C. C., Vitek, J. L., & Terman, D. (2008). Thalamocortical relay fidelity varies in deep brain stmulation protocols in data-driven computational models. Journal of Neurophysiology, 99, 1477–1492.PubMedCrossRef
Zurück zum Zitat Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinsons disease: Networks, models and treatments. Trends in Neuroscience, 30, 357–364.CrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinsons disease: Networks, models and treatments. Trends in Neuroscience, 30, 357–364.CrossRef
Zurück zum Zitat Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Basis of periodic activities in the basal ganglia-thalamic-cortical system of the Rhesus Macaque. Journal of Neuroscience, 23, 1916–1923.PubMed Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Basis of periodic activities in the basal ganglia-thalamic-cortical system of the Rhesus Macaque. Journal of Neuroscience, 23, 1916–1923.PubMed
Zurück zum Zitat Hauptmann, C., Omel’chenko, O., Popovych, O. V., Maistrenko, Y., & Tass, P. A. (2007a). Control of spatially patterned synchrony with multisite delayed feedback. Physical Review. E, 76(6), 066209.CrossRef Hauptmann, C., Omel’chenko, O., Popovych, O. V., Maistrenko, Y., & Tass, P. A. (2007a). Control of spatially patterned synchrony with multisite delayed feedback. Physical Review. E, 76(6), 066209.CrossRef
Zurück zum Zitat Hauptmann, C., Popovych, O., & Tass, P. A. (2007b). Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: A modeling study. Expert Review of Medical Devices, 4, 633–635.PubMedCrossRef Hauptmann, C., Popovych, O., & Tass, P. A. (2007b). Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: A modeling study. Expert Review of Medical Devices, 4, 633–635.PubMedCrossRef
Zurück zum Zitat Hauptmann, C., & Tass, P. A. (2009). Cumulative and after-effects of short and weak coordinated reset stimulation: A modeling study. J. Neural Eng., 6. Hauptmann, C., & Tass, P. A. (2009). Cumulative and after-effects of short and weak coordinated reset stimulation: A modeling study. J. Neural Eng., 6.
Zurück zum Zitat Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.CrossRef Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.CrossRef
Zurück zum Zitat Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement Disorders, 14, S290–S304.CrossRef Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement Disorders, 14, S290–S304.CrossRef
Zurück zum Zitat Modolo, J., Mosekilde, E., & Beuter, A. (2007). New insights offered by a computational model of deep brain stimulation. Journal of Physiology Paris, 101, 56–63.CrossRef Modolo, J., Mosekilde, E., & Beuter, A. (2007). New insights offered by a computational model of deep brain stimulation. Journal of Physiology Paris, 101, 56–63.CrossRef
Zurück zum Zitat Montgomery, E., Jr., & Baker, K. (2000). Mechanism of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.PubMed Montgomery, E., Jr., & Baker, K. (2000). Mechanism of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.PubMed
Zurück zum Zitat Narayana, S., Jacks, A., Robin, D. A., Poizner, H., Zhang, W., Franklin, C., et al. (2009). A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinsons disease. American Journal of Speech-Language Pathology, 18, 146–161.PubMedCrossRef Narayana, S., Jacks, A., Robin, D. A., Poizner, H., Zhang, W., Franklin, C., et al. (2009). A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinsons disease. American Journal of Speech-Language Pathology, 18, 146–161.PubMedCrossRef
Zurück zum Zitat Obeso, J., Rodriguez, M., & DeLong, M. (1997). Basal ganglia pathophysiology: A critical review. Advances in Neurology, 74, 3–18.PubMed Obeso, J., Rodriguez, M., & DeLong, M. (1997). Basal ganglia pathophysiology: A critical review. Advances in Neurology, 74, 3–18.PubMed
Zurück zum Zitat Obeso, J. A., Rodrguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., et al. (2008). Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Movement Disorders, 23, S548–S559.PubMedCrossRef Obeso, J. A., Rodrguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., et al. (2008). Functional organization of the basal ganglia: Therapeutic implications for Parkinson’s disease. Movement Disorders, 23, S548–S559.PubMedCrossRef
Zurück zum Zitat Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. Journal of Neurophysiology, 83, 3366–3376.PubMed Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects in the globus pallidus of the rat. Journal of Neurophysiology, 83, 3366–3376.PubMed
Zurück zum Zitat Orosz, G., Moehlis, J., & Murray, R. M. (2009). Controlling biological networks by time-delayed signals. Philosophical Transactions of the Royal Society, 368, 439–454. Orosz, G., Moehlis, J., & Murray, R. M. (2009). Controlling biological networks by time-delayed signals. Philosophical Transactions of the Royal Society, 368, 439–454.
Zurück zum Zitat Pirini, M., Rocchi, L., Sensi, M., & Chiari, L. (2009). A computational modelling appraoch to investigate different targets in deep brain stimulation for Parkinson’s disease. JCNS, 26(1), 91–107. Pirini, M., Rocchi, L., Sensi, M., & Chiari, L. (2009). A computational modelling appraoch to investigate different targets in deep brain stimulation for Parkinson’s disease. JCNS, 26(1), 91–107.
Zurück zum Zitat Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of Parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMed Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine vervet model of Parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMed
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.PubMedCrossRef Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.PubMedCrossRef
Zurück zum Zitat Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2007). Basal ganglia modeling in healthy and Parkinsons disease state. II. Network-based multi-units simulation. In 26th IEEE American control conference. Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2007). Basal ganglia modeling in healthy and Parkinsons disease state. II. Network-based multi-units simulation. In 26th IEEE American control conference.
Zurück zum Zitat Sarma, S. V., Cheng, M., Williams, Z., Hu, R., Eskandar, E., & Brown, E. N. (2010). Using point process models to compare neuronal activity in subthalamic nucleus of Parkinson’s patients and a healthy primate. IEEE Transactions on Biomedical Engineering, 57(6), 1297–1305. Sarma, S. V., Cheng, M., Williams, Z., Hu, R., Eskandar, E., & Brown, E. N. (2010). Using point process models to compare neuronal activity in subthalamic nucleus of Parkinson’s patients and a healthy primate. IEEE Transactions on Biomedical Engineering, 57(6), 1297–1305.
Zurück zum Zitat Schiff, S. J. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368(1918), 2269–2308.CrossRef Schiff, S. J. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368(1918), 2269–2308.CrossRef
Zurück zum Zitat Stanford, I., & Cooper, A. (1999). Presynaptic μ and δ opioid receptor modulation of gabaa ipscs in the rat globus pallidus in vitro. Journal of Neuroscience, 19, 4796–4803.PubMed Stanford, I., & Cooper, A. (1999). Presynaptic μ and δ opioid receptor modulation of gabaa ipscs in the rat globus pallidus in vitro. Journal of Neuroscience, 19, 4796–4803.PubMed
Zurück zum Zitat Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.PubMedCrossRef Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88.PubMedCrossRef
Zurück zum Zitat Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22(7), 2963–2976.PubMed Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22(7), 2963–2976.PubMed
Zurück zum Zitat Tommasi, G., Lanotte, M., Albert, U., Zibetti, M., Castelli, L., Maina, G., et al. (2008). Transient acute depressive state induced by subthalamic region stimulation. Journal of Neurological Science, 273, 135–138.CrossRef Tommasi, G., Lanotte, M., Albert, U., Zibetti, M., Castelli, L., Maina, G., et al. (2008). Transient acute depressive state induced by subthalamic region stimulation. Journal of Neurological Science, 273, 135–138.CrossRef
Zurück zum Zitat Wei, X. F., & Grill, W. M. (2009). Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineer, 6, 016004.CrossRef Wei, X. F., & Grill, W. M. (2009). Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineer, 6, 016004.CrossRef
Metadaten
Titel
The effects of DBS patterns on basal ganglia activity and thalamic relay
A computational study
verfasst von
Rahul Agarwal
Sridevi V. Sarma
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0379-z

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner