Skip to main content
Erschienen in: International Journal of Plastics Technology 2/2014

01.12.2014 | Research Article

Influence of interface interaction on thermal, mechanical and conducting properties of segmented poly (azo-urethane)/carbon nanotube composites

verfasst von: Ayesha Kausar, Muhammad Siddiq

Erschienen in: International Journal of Plastics Technology | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research work, solution dispersion technique was employed for the preparation of segmented poly (azo-urethane)/multi-walled carbon nanotube (SPAU/MWCNT) nanocomposites whereas the polyurethane was obtained using single-step procedure. The carboxylated nanotube-based non-compatiblized SPAU/MWCNT and acid chloride functionalized MWCNT-based compatiblized systems were prepared. Afterwards, the hydroxyl end-terminated polyurethane was grafted to acid chloride functional MWCNT through esterification reaction. The grafting to the carboxylated nanotube was achieved via physical interaction. The FTIR spectra confirmed the covalent bonding between the matrix and side-walls of nanotube. Various nanotube loading levels and surface-modified groups were considered to regulate mechanical, thermal and electrical performance of SPAU/MWCNT. The experimental results showed that a moderate loading-level of 5 wt. % MWCNT produced the maximum tensile strength (63.1 MPa) in compatiblized nanocomposites, while the tensile strength of non-compatiblized SPAU/MWCNT was lower (47.25 MPa). Comparative studies based on scanning and transmission electron microscopy of the chemically bonded samples also revealed the covalent coating character and unique nano-fibriller morphology. The dynamic mechanical analysis of nanocomposites showed segmental rigidity due to covalent linking and sample had Tg of 142–152 °C. Addition of acid chloride functionalized MWCNT also contributed to an improvement in the electrical conductivity (2.01-4.31 S cm−1) relative to SPAU/carboxylated MWCNT 1.27-2.86 S cm−1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRef
2.
Zurück zum Zitat Nanda GS, Sravendra R, Jae WC, Lin L, Siew HC (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRef Nanda GS, Sravendra R, Jae WC, Lin L, Siew HC (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRef
3.
Zurück zum Zitat Lin Y, Zhou B, Fernando SKA, Liu P, Allard LF, Sun YP (2003) Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36:7199–7204CrossRef Lin Y, Zhou B, Fernando SKA, Liu P, Allard LF, Sun YP (2003) Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36:7199–7204CrossRef
4.
Zurück zum Zitat Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRef Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRef
5.
Zurück zum Zitat Sreekumar TV, Liu T, Min BG, Go H, Kumar S, Hauge RH, Smalley RE (2004) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16:58–61CrossRef Sreekumar TV, Liu T, Min BG, Go H, Kumar S, Hauge RH, Smalley RE (2004) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16:58–61CrossRef
6.
Zurück zum Zitat Brown JM, Anderson DP, Justice RS, Lafdi K, Belfor M, Strong KL, Schaefer DW (2005) Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer 46:10854–10865CrossRef Brown JM, Anderson DP, Justice RS, Lafdi K, Belfor M, Strong KL, Schaefer DW (2005) Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer 46:10854–10865CrossRef
7.
Zurück zum Zitat Kanagaraj S, Varanda FR, Zhiltsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Comp Sci Technol 67:3071–3077CrossRef Kanagaraj S, Varanda FR, Zhiltsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Comp Sci Technol 67:3071–3077CrossRef
8.
Zurück zum Zitat Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the Crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites. Chem Mater 19:3787–3792CrossRef Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the Crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites. Chem Mater 19:3787–3792CrossRef
9.
Zurück zum Zitat Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRef Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRef
10.
Zurück zum Zitat Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-Organization of PEO-graft-single-walled carbon nanotubes in solutions and langmuir-blodgett films. Langmuir 17:5125–5128CrossRef Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-Organization of PEO-graft-single-walled carbon nanotubes in solutions and langmuir-blodgett films. Langmuir 17:5125–5128CrossRef
11.
Zurück zum Zitat Ying YM, Saini RK, Liang F, Sadana AK, Billups WE (2003) Functionalization of carbon nanotubes by free radicals. Org Lett 5:1471–1473CrossRef Ying YM, Saini RK, Liang F, Sadana AK, Billups WE (2003) Functionalization of carbon nanotubes by free radicals. Org Lett 5:1471–1473CrossRef
12.
Zurück zum Zitat Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic Functionalization of canbon nanotubes. J Am Chem Soc 124:760–761CrossRef Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic Functionalization of canbon nanotubes. J Am Chem Soc 124:760–761CrossRef
13.
Zurück zum Zitat Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening High performance ultrahigh molecular weight polyethylene using multi-walled carbon nanotubes. Polymer 44:5643–5654CrossRef Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening High performance ultrahigh molecular weight polyethylene using multi-walled carbon nanotubes. Polymer 44:5643–5654CrossRef
14.
Zurück zum Zitat Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem Phys Lett 337:43–47CrossRef Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem Phys Lett 337:43–47CrossRef
15.
Zurück zum Zitat Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/Epoxy-Composites. Chem Phys Lett 370:820–824CrossRef Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/Epoxy-Composites. Chem Phys Lett 370:820–824CrossRef
16.
Zurück zum Zitat Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780CrossRef Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780CrossRef
17.
Zurück zum Zitat Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol 67:1920–1929CrossRef Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol 67:1920–1929CrossRef
18.
Zurück zum Zitat Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRef Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRef
19.
Zurück zum Zitat Marc B, Muhammad YR, Andreas L (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef Marc B, Muhammad YR, Andreas L (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410CrossRef
20.
Zurück zum Zitat Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413CrossRef Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413CrossRef
21.
Zurück zum Zitat Liu I, Huang H, Chang HC, Tsai H, Hsu C, Tsiang RC (2004) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: Anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287CrossRef Liu I, Huang H, Chang HC, Tsai H, Hsu C, Tsiang RC (2004) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: Anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287CrossRef
22.
Zurück zum Zitat Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRef Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRef
23.
Zurück zum Zitat Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. J Mater Chem 21:3751–3759CrossRef Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. J Mater Chem 21:3751–3759CrossRef
24.
Zurück zum Zitat Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances 1:576–578CrossRef Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances 1:576–578CrossRef
25.
Zurück zum Zitat Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv Mater 24:4071–4096CrossRef Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv Mater 24:4071–4096CrossRef
26.
Zurück zum Zitat Thakur VK, Yan J, Lin M-F, Zhi C, Golberg D, Bando Y, Sim R, Lee PS (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRef Thakur VK, Yan J, Lin M-F, Zhi C, Golberg D, Bando Y, Sim R, Lee PS (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRef
27.
Zurück zum Zitat Hussain S T U.S. (2009) Novel catalyst to manufacture carbon nanotubes and hydrogen gas. PatentUS2009208403 Hussain S T U.S. (2009) Novel catalyst to manufacture carbon nanotubes and hydrogen gas. PatentUS2009208403
28.
Zurück zum Zitat Hussain ST, Abbas F, Kausar A, Khan MR (2012) New polyaniline/polypyrrole/polythiophene and functionalized multi-walled carbon nano-tubes based nanocomposites: Layer by layer in-situ polymerization. High Perform Polym 25:70–78CrossRef Hussain ST, Abbas F, Kausar A, Khan MR (2012) New polyaniline/polypyrrole/polythiophene and functionalized multi-walled carbon nano-tubes based nanocomposites: Layer by layer in-situ polymerization. High Perform Polym 25:70–78CrossRef
29.
Zurück zum Zitat Kausar A, Hussain ST (2013) Physical and thermal properties of thermoplastic poly (azo-urethane) s: Effect of novel chain extender and hard segment content. High Perform Polym 25:337–347CrossRef Kausar A, Hussain ST (2013) Physical and thermal properties of thermoplastic poly (azo-urethane) s: Effect of novel chain extender and hard segment content. High Perform Polym 25:337–347CrossRef
30.
Zurück zum Zitat Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Comp Sci Tech 67:1920–1929CrossRef Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Comp Sci Tech 67:1920–1929CrossRef
31.
Zurück zum Zitat Wang T-L, Tseng C-G (2007) Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. J Appl Polym Sci 105:1642–1650CrossRef Wang T-L, Tseng C-G (2007) Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. J Appl Polym Sci 105:1642–1650CrossRef
32.
Zurück zum Zitat Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci Part B Polym Phys 45:490–501CrossRef Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci Part B Polym Phys 45:490–501CrossRef
33.
Zurück zum Zitat Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRef Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRef
Metadaten
Titel
Influence of interface interaction on thermal, mechanical and conducting properties of segmented poly (azo-urethane)/carbon nanotube composites
verfasst von
Ayesha Kausar
Muhammad Siddiq
Publikationsdatum
01.12.2014
Verlag
Springer India
Erschienen in
International Journal of Plastics Technology / Ausgabe 2/2014
Print ISSN: 0972-656X
Elektronische ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-014-9079-7

Weitere Artikel der Ausgabe 2/2014

International Journal of Plastics Technology 2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.