Skip to main content
Erschienen in: Strength of Materials 4/2018

24.10.2018

Influence of Local Surface Damage on the Natural Frequencies of the Higher Modes of Flexural Vibration of Cantilever Rods

verfasst von: A. P. Zinkovskii, I. G. Tokar’

Erschienen in: Strength of Materials | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The operating life of gas turbine engines is, by and large, dependent on the reliability of compressor rotor blades that are subjected to a complex set of forces of a different nature during their operation, and in particular, to mechanical damage resulting in severe accidents and material losses. The ingress of foreign objects into the air-gas channel of the engine is one of the causes giving rise to blade damage. As a consequence, various marks, dents, dimples, etc., occur on rotor blades changing the designed geometry of the blade airfoil and their natural vibration frequency spectrum and beginning to act as stress concentrators, thus reducing the vibration resistance of blades. The known investigations on the vibration of damaged mechanical systems, including also compressor rotor blades, have an insufficient amount of data on the formation of the spectrum of their natural frequencies typical of their vibration modes with consideration of the influence of a combined change in the elastic and inertia characteristics. The paper deals with a computational and experimental investigation on the influence of local surface damage on the spectrum of natural flexural vibration frequencies of a cantilever rod with a constant cross section as a simplest model of the compressor rotor blade. The regularities in the variation of the natural frequencies of the first to fourth flexural vibration modes of the rods of different flexibility with the geometrical parameters of the notch simulating damage, such as the position along the length and its depth, are presented. The distribution of variations in the natural frequencies of the rods is found to correspond to the location of the nodes of their vibration mode under investigation. The reduction in the frequency of the damaged rod occurs independently of the vibration mode and the depth of the notch when it is located near the rod attachment, while being more significant with the depth of the notch and less pronounced for the higher vibration modes as compared to the first one, which is attributable to the variation in the rod stiffness. The equality of the natural vibration frequencies of the damaged and undamaged rods is observed at a certain position of the notch along the length irrespective of the vibration mode. As the notch approaches the free end of the rod, the natural vibration frequencies become somewhat higher than those for the undamaged rod, since in this case they are more sensitive to the variation in the inertia properties of the rod due to the presence of damage. With the decreasing flexibility, the variation in the natural frequencies of the investigated vibration modes of the damaged rod increases for the same value of the relative damage depth. The results of the performed computations are in a good agreement with the experimental testing data of the rods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. M. Muravchenko and A. V. Sheremet’ev, “Topical problems of dynamics, strength and reliability of modern aircraft engines,” Vibr. Tekhn. Tekhnolog., No. 4 (20), 2–5 (2001). F. M. Muravchenko and A. V. Sheremet’ev, “Topical problems of dynamics, strength and reliability of modern aircraft engines,” Vibr. Tekhn. Tekhnolog., No. 4 (20), 2–5 (2001).
2.
Zurück zum Zitat Yu. A. Nozhnitskii, “Development of the key (critical) manufacturing techniques to create a new generation of gas turbine engines,” in: New Manufacturing Processes and Reliability of GTE [in Russian], Issue 1 (2000), pp. 5–34. Yu. A. Nozhnitskii, “Development of the key (critical) manufacturing techniques to create a new generation of gas turbine engines,” in: New Manufacturing Processes and Reliability of GTE [in Russian], Issue 1 (2000), pp. 5–34.
3.
Zurück zum Zitat V. T. Troshchenko (Ed.), Load-Bearing Capacity of GTE Rotor Blades under Vibration Loads [in Russian], Naukova Dumka, Kiev (1981). V. T. Troshchenko (Ed.), Load-Bearing Capacity of GTE Rotor Blades under Vibration Loads [in Russian], Naukova Dumka, Kiev (1981).
4.
Zurück zum Zitat N. N. Sirotin, Design and Operation, Damaging and Efficiency of Gas Turbine Engines. Fundamentals of Aircraft Engine and Power Plant Design [in Russian] RIA IM-Inform, Moscow (2002). N. N. Sirotin, Design and Operation, Damaging and Efficiency of Gas Turbine Engines. Fundamentals of Aircraft Engine and Power Plant Design [in Russian] RIA IM-Inform, Moscow (2002).
5.
Zurück zum Zitat V. A. Boguslaev, V. K. Yatsenko, and V. F. Pritchenko, Engineering Support and Prediction of the Load-Bearing Capacity of GTE Components [in Russian], Manuscript, Kiev (1993). V. A. Boguslaev, V. K. Yatsenko, and V. F. Pritchenko, Engineering Support and Prediction of the Load-Bearing Capacity of GTE Components [in Russian], Manuscript, Kiev (1993).
6.
Zurück zum Zitat V. A. Boguslaev, “Possibility of increasing the service life of damaged blades,” Strength Mater., 24, No. 4, 317–320 (1992).CrossRef V. A. Boguslaev, “Possibility of increasing the service life of damaged blades,” Strength Mater., 24, No. 4, 317–320 (1992).CrossRef
7.
Zurück zum Zitat I. A. Birger and B. F. Balashov, Structural Strength of Materials and Components of Gas Turbine Engines [in Russian], Mashinostroenie, Moscow (1981). I. A. Birger and B. F. Balashov, Structural Strength of Materials and Components of Gas Turbine Engines [in Russian], Mashinostroenie, Moscow (1981).
8.
Zurück zum Zitat M. Sh. Nikhamkin, L. V. Voronov, I. P. Konev, and I. V. Semenova, “Damage with foreign objects and stress concentration in compressor rotor blades,” in: Reliability and Life of Machines and Structures [in Russian], No. 31 (2008), pp. 126–135. M. Sh. Nikhamkin, L. V. Voronov, I. P. Konev, and I. V. Semenova, “Damage with foreign objects and stress concentration in compressor rotor blades,” in: Reliability and Life of Machines and Structures [in Russian], No. 31 (2008), pp. 126–135.
9.
Zurück zum Zitat OST 1-00-304-79. Gas Turbine Engine Blades. Normalization of Compressor Blade Damage form Foreign Object Ingestion [in Russian], Introduced since July 07, 1991. OST 1-00-304-79. Gas Turbine Engine Blades. Normalization of Compressor Blade Damage form Foreign Object Ingestion [in Russian], Introduced since July 07, 1991.
10.
Zurück zum Zitat V. A. Simson, “Operational/design factors determining the intensity of foreign-object damage to turbojet engines,” in: Operation and Repair of Aircraft Equipment [in Russian], Issue 1 (1972), pp. 101–107. V. A. Simson, “Operational/design factors determining the intensity of foreign-object damage to turbojet engines,” in: Operation and Repair of Aircraft Equipment [in Russian], Issue 1 (1972), pp. 101–107.
11.
Zurück zum Zitat A. M. Sulima and M. I. Evstigneev, Quality of a Surface Layer and the Fatigue Strength of Alloys [in Russian] Mashinostroenie, Moscow (1974). A. M. Sulima and M. I. Evstigneev, Quality of a Surface Layer and the Fatigue Strength of Alloys [in Russian] Mashinostroenie, Moscow (1974).
12.
Zurück zum Zitat A. N. Petukhov, Fatigue Resistance of GTE Components [in Russian] Mashinostroenie, Moscow (1993). A. N. Petukhov, Fatigue Resistance of GTE Components [in Russian] Mashinostroenie, Moscow (1993).
13.
Zurück zum Zitat M. Krawczuk and W. Ostachowicz, “Damage indicators for diagnostic of fatigue cracks in structures by vibration measurements – a survey,” J. Theor. Appl. Mech., 34, No. 2, 307–326 (1996). M. Krawczuk and W. Ostachowicz, “Damage indicators for diagnostic of fatigue cracks in structures by vibration measurements – a survey,” J. Theor. Appl. Mech., 34, No. 2, 307–326 (1996).
14.
Zurück zum Zitat Yu. S. Vorob’ev and M. A. Storozhenko, “Analysis of damaged blade system vibration in turbomachinery,” Aviats.-Kosm. Tekhn. Tekhnol., No. 8 (44), 132–134 (2007). Yu. S. Vorob’ev and M. A. Storozhenko, “Analysis of damaged blade system vibration in turbomachinery,” Aviats.-Kosm. Tekhn. Tekhnol., No. 8 (44), 132–134 (2007).
15.
Zurück zum Zitat Yu. S. Vorob’ev, V. N. Romanenko, E. V. Tishkovets, and M. A. Storozhenko, “Damaged turbine blade vibration,” Vibr. Tekhn. Tekhnlog., No. 5 (37), 47–51 (2004). Yu. S. Vorob’ev, V. N. Romanenko, E. V. Tishkovets, and M. A. Storozhenko, “Damaged turbine blade vibration,” Vibr. Tekhn. Tekhnlog., No. 5 (37), 47–51 (2004).
16.
Zurück zum Zitat E. V. Martsenyuk, A. I. Garkusha, and V. S. Chigrin, “Influence of a dent-type defect on the frequency characteristics of compressor rotor blades,” Aviats.-Kosm. Tekhn. Tekhnol., No. 8 (85), 61–65 (2011). E. V. Martsenyuk, A. I. Garkusha, and V. S. Chigrin, “Influence of a dent-type defect on the frequency characteristics of compressor rotor blades,” Aviats.-Kosm. Tekhn. Tekhnol., No. 8 (85), 61–65 (2011).
17.
Zurück zum Zitat N. A. Shevelev and I. V. Dombrovskii, “Numerical study of the dynamic characteristics of structural elements with shape defects,” Vestn. PGTU. Mekhanika, No. 1, 160–163 (2009). N. A. Shevelev and I. V. Dombrovskii, “Numerical study of the dynamic characteristics of structural elements with shape defects,” Vestn. PGTU. Mekhanika, No. 1, 160–163 (2009).
18.
Zurück zum Zitat O. F. Boriskin and V. V. Persiyanov, “Modeling damages of machine parts. Report 1,” Strength Mater., 26, No. 1, 84–88 (1994).CrossRef O. F. Boriskin and V. V. Persiyanov, “Modeling damages of machine parts. Report 1,” Strength Mater., 26, No. 1, 84–88 (1994).CrossRef
19.
Zurück zum Zitat I. G. Tokar’ and A. P. Zinkovskii, “A study of the influence of damage in equitype elements on vibration of regular systems,” Strength Mater., 38, No. 2, 135–140 (2006).CrossRef I. G. Tokar’ and A. P. Zinkovskii, “A study of the influence of damage in equitype elements on vibration of regular systems,” Strength Mater., 38, No. 2, 135–140 (2006).CrossRef
20.
Zurück zum Zitat Kaushar H. Barad, D. S. Sharma, Vishal Vyas, “Crack detection in cantilever beam by frequency based method,” Procedia Engineer., 51, 770–775 (2013).CrossRef Kaushar H. Barad, D. S. Sharma, Vishal Vyas, “Crack detection in cantilever beam by frequency based method,” Procedia Engineer., 51, 770–775 (2013).CrossRef
21.
Zurück zum Zitat Dong Wei, Yinghua Liu, and Zhihai Xiang, “An analytical method for free vibration analysis of functionally graded beams with edge cracks,” J. Sound Vib., 331, 1686–1700 (2012).CrossRef Dong Wei, Yinghua Liu, and Zhihai Xiang, “An analytical method for free vibration analysis of functionally graded beams with edge cracks,” J. Sound Vib., 331, 1686–1700 (2012).CrossRef
22.
Zurück zum Zitat Kamil Aydin, “Free vibration of functionally graded beams with arbitrary number of surface cracks,” Eur. J. Mech. Ser. A-Solid., 42, 112–124 (2013).CrossRef Kamil Aydin, “Free vibration of functionally graded beams with arbitrary number of surface cracks,” Eur. J. Mech. Ser. A-Solid., 42, 112–124 (2013).CrossRef
23.
Zurück zum Zitat A. P. Zinkovskii, I. G. Tokar’, and V. A. Kruts, “Influence of the local surface damage parameters on the natural frequencies of vibration of structural elements,” Strength Mater., 47, No. 2, 211–226 (2015).CrossRef A. P. Zinkovskii, I. G. Tokar’, and V. A. Kruts, “Influence of the local surface damage parameters on the natural frequencies of vibration of structural elements,” Strength Mater., 47, No. 2, 211–226 (2015).CrossRef
24.
Zurück zum Zitat G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Handbook on Strength of Materials [in Russian], Naukova Dumka, Kiev (1975). G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Handbook on Strength of Materials [in Russian], Naukova Dumka, Kiev (1975).
25.
Zurück zum Zitat I. G. Tokar’, A. P. Zinkovskii, A. Ya. Adamenko, et al., “On the assessment of the vibration stress level of pairwise shrouded turbine blades,” Strength Mater., 18, No. 4, 511–515 (1986).CrossRef I. G. Tokar’, A. P. Zinkovskii, A. Ya. Adamenko, et al., “On the assessment of the vibration stress level of pairwise shrouded turbine blades,” Strength Mater., 18, No. 4, 511–515 (1986).CrossRef
26.
Zurück zum Zitat V. A. Karasev, I. D. Kostin, and A. B. Roitman, “Prevention of machine strength failures by vibrodiagnostic methods. 2. Study of vibrodiagnostics for preventing failure of certain gas-turbine engine parts and assemblies,” Strength Mater., 14, No. 12, 1677–1683 (1982).CrossRef V. A. Karasev, I. D. Kostin, and A. B. Roitman, “Prevention of machine strength failures by vibrodiagnostic methods. 2. Study of vibrodiagnostics for preventing failure of certain gas-turbine engine parts and assemblies,” Strength Mater., 14, No. 12, 1677–1683 (1982).CrossRef
27.
Zurück zum Zitat V. V. Matveev, A. P. Bovsunovskii, and I. G. Tokar’, “Methods of vibration diagnostics of structural elements with cracks,” Vibr. Tekhn. Tekhnol., No. 4 (20), 31–35 (2001). V. V. Matveev, A. P. Bovsunovskii, and I. G. Tokar’, “Methods of vibration diagnostics of structural elements with cracks,” Vibr. Tekhn. Tekhnol., No. 4 (20), 31–35 (2001).
Metadaten
Titel
Influence of Local Surface Damage on the Natural Frequencies of the Higher Modes of Flexural Vibration of Cantilever Rods
verfasst von
A. P. Zinkovskii
I. G. Tokar’
Publikationsdatum
24.10.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-0001-y

Weitere Artikel der Ausgabe 4/2018

Strength of Materials 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.