Skip to main content
Erschienen in: Strength of Materials 3/2022

05.09.2022

Influence of Metal Layer Thickness on the Stress-Strain State and Strength of Metal Composite Cylinders Under Internal Explosion

verfasst von: P. P. Lepikhin, V. A. Romashchenko, O. S. Beiner, S. O. Tarasovska

Erschienen in: Strength of Materials | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of metal layer thickness on the stress-strain state and strength of metal composite cylinders of constant total thickness under the action of internal dynamic pressure from an explosion of an explosive evenly distributed along the charge axis in an air medium with a constant relative charge mass ξ has been studied numerically. It is shown that the strength of shells with unidirectional circular reinforcement of the outer composite layer using composites with a low tensile strength boundary in the isotropy plane is determined mainly by wave processes along the thickness of the shell. For such a condition, its dependence on radial and axial stresses is much higher than on circular stresses, which are usually much larger for the first two components of the stress tensor. At constant ξ and total thicknesses H of the cylinder, the optimal ratio βopt of the thickness of the metal layer h to H in terms of durability essentially depends on H and varies in the interval 0.15–0.35. The dependence βopt on both H and ξ is non-monotone. It varies between 0.15 and 0.25 for a thin shell, 0.25–0.3 for a thick shell, and equal to 0.35 for a medium-thick shell. Due to wave processes along the radial coordinate, there may be cases where a thicker shell will be less strong than a thinner one with the same charge mass M and h/H. There may be cases where a change of M almost 1.5 times will have almost no effect on the strength of the cylinder. Significant influence on the strength of the shells have plastic irreversible energy losses in the inner steel layer, due to which the outer composite layer receives a shock wave of less intensity, and the strength of the object as a whole can be ensured.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. S. Vorontsova, M. A. Syrunin, A. G. Fedorenko, et al., “Experimental study of variation coefficients of strength characteristics of fiberglass cylindrical shells under internal pulse loading”, Mekh. Kompoz. Mater., No. 4, 642–646 (1987). O. S. Vorontsova, M. A. Syrunin, A. G. Fedorenko, et al., “Experimental study of variation coefficients of strength characteristics of fiberglass cylindrical shells under internal pulse loading”, Mekh. Kompoz. Mater., No. 4, 642–646 (1987).
2.
Zurück zum Zitat V. I. Tsypkin, V. N. Rusak, A. G. Ivanov, et al., “Deformation and fracture of two-layered metal-plastic shells under internal pulse loading,” Mekh. Kompoz. Mater., No. 5, 833–838 (1987). V. I. Tsypkin, V. N. Rusak, A. G. Ivanov, et al., “Deformation and fracture of two-layered metal-plastic shells under internal pulse loading,” Mekh. Kompoz. Mater., No. 5, 833–838 (1987).
3.
Zurück zum Zitat A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Limit deformations of oriented fiberglass shells under internal explosive loading,” Fiz. Goren. Vzryv., No. 2, 87–93 (1992). A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Limit deformations of oriented fiberglass shells under internal explosive loading,” Fiz. Goren. Vzryv., No. 2, 87–93 (1992).
4.
Zurück zum Zitat A. G. Ivanov, A. G. Fedorenko, and M. A. Syrunin, “Influence of reinforcement structure on the limit deformability and strength of glass fiber reinforced plastic shells under explosive loading from the inside,” Prikl. Mekh. Tekhn. Fiz., No. 4, 130–135 (1992). A. G. Ivanov, A. G. Fedorenko, and M. A. Syrunin, “Influence of reinforcement structure on the limit deformability and strength of glass fiber reinforced plastic shells under explosive loading from the inside,” Prikl. Mekh. Tekhn. Fiz., No. 4, 130–135 (1992).
5.
Zurück zum Zitat A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Dynamic strength of shells made of oriented fibrous composites under explosive loading (a review)”, Prikl. Mekh. Tekhn. Fiz., No. 1, 126–132 (1993). A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Dynamic strength of shells made of oriented fibrous composites under explosive loading (a review)”, Prikl. Mekh. Tekhn. Fiz., No. 1, 126–132 (1993).
6.
Zurück zum Zitat M. A. Syrunin, A. G. Fedorenko, and A. G. Ivanov, “Dynamic strength of shells made of oriented composites based on fibers of different compositions,” Prikl. Mekh. Tekhn. Fiz., No. 3, 141–145 (1995). M. A. Syrunin, A. G. Fedorenko, and A. G. Ivanov, “Dynamic strength of shells made of oriented composites based on fibers of different compositions,” Prikl. Mekh. Tekhn. Fiz., No. 3, 141–145 (1995).
7.
Zurück zum Zitat A. I. Abakumov, P. N. Nizovtsev, V. P. Solov’ev, et al., “Calculated and experimental study of stress and strain state of composite shells under dynamic loading in view of large deformations”, Mekh. Kompoz. Mater., No. 1, 28–37 (1998). A. I. Abakumov, P. N. Nizovtsev, V. P. Solov’ev, et al., “Calculated and experimental study of stress and strain state of composite shells under dynamic loading in view of large deformations”, Mekh. Kompoz. Mater., No. 1, 28–37 (1998).
8.
Zurück zum Zitat V. A. Ryzhanskii, V. N. Rusak, and A. G. Ivanov, “Evaluation of explosion resistance of cylindrical composite shells,” Fiz. Goren. Vzryv., No. 1, 115–121 (1999). V. A. Ryzhanskii, V. N. Rusak, and A. G. Ivanov, “Evaluation of explosion resistance of cylindrical composite shells,” Fiz. Goren. Vzryv., No. 1, 115–121 (1999).
9.
Zurück zum Zitat A. G. Ivanova (Ed.), Fracture of Different-Scale Objects during Explosion [in Russian], RFNC-VNIIEF, Sarov (2001). A. G. Ivanova (Ed.), Fracture of Different-Scale Objects during Explosion [in Russian], RFNC-VNIIEF, Sarov (2001).
10.
Zurück zum Zitat V. N. Rusak, A. G. Fedorenko, M. A. Syrunin, et al., “The limit deformability and strength of basalt-plastic shells under internal explosive loading,” Prikl. Mekh. Tekhn. Fiz., No. 1, 186–195 (2002). V. N. Rusak, A. G. Fedorenko, M. A. Syrunin, et al., “The limit deformability and strength of basalt-plastic shells under internal explosive loading,” Prikl. Mekh. Tekhn. Fiz., No. 1, 186–195 (2002).
11.
Zurück zum Zitat N. A. Abrosimov and N. A. Novosel’tseva, “Numerical analysis of progressive fracture of metal-plastic cylindrical shells under pulse loading,” in: Proc. of the XI Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ2016), (May 25–31, 2016, Alushta), MAI, Moscow (2016), pp. 289–291. N. A. Abrosimov and N. A. Novosel’tseva, “Numerical analysis of progressive fracture of metal-plastic cylindrical shells under pulse loading,” in: Proc. of the XI Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ2016), (May 25–31, 2016, Alushta), MAI, Moscow (2016), pp. 289–291.
12.
Zurück zum Zitat N. A. Abrosimov and N. A. Novosel’tseva, “The identification of material parameters in nonlinear deformation models of metallic-plastic cylindrical shells under pulsed loading,” Mater. Phys. Mech., 23, 66–70 (2015). N. A. Abrosimov and N. A. Novosel’tseva, “The identification of material parameters in nonlinear deformation models of metallic-plastic cylindrical shells under pulsed loading,” Mater. Phys. Mech., 23, 66–70 (2015).
13.
Zurück zum Zitat P. P. Lepikhin and V. A. Romaschenko, The Strength of Inhomogeneous Anisotropic Hollow Cylinders under Pulse Loading [in Russian], Naukova Dumka, Kiev (2014). P. P. Lepikhin and V. A. Romaschenko, The Strength of Inhomogeneous Anisotropic Hollow Cylinders under Pulse Loading [in Russian], Naukova Dumka, Kiev (2014).
14.
Zurück zum Zitat V. A. Romaschenko, Yu. N. Babich, and E. V. Bakhtina, “Strength assessment for composite and metal-composite cylinders under pulse loading. Part 2. Numerical evaluation of strength for multilayer cylinders of finite length under internal explosion”, Strength Mater., 44, No. 5, 502–511 (2012), https://doi.org/10.1007/s11223-012-9403-4.CrossRef V. A. Romaschenko, Yu. N. Babich, and E. V. Bakhtina, “Strength assessment for composite and metal-composite cylinders under pulse loading. Part 2. Numerical evaluation of strength for multilayer cylinders of finite length under internal explosion”, Strength Mater., 44, No. 5, 502–511 (2012), https://​doi.​org/​10.​1007/​s11223-012-9403-4.CrossRef
15.
Zurück zum Zitat P. P. Lepikhin, V. A. Romaschenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 2. Comparison of numerical results with experimental and theoretical for cylinders”, Strength Mater., 47, No. 3, 406–414 (2015), https://doi.org/10.1007/s11223-015-9671-x.CrossRef P. P. Lepikhin, V. A. Romaschenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 2. Comparison of numerical results with experimental and theoretical for cylinders”, Strength Mater., 47, No. 3, 406–414 (2015), https://​doi.​org/​10.​1007/​s11223-015-9671-x.CrossRef
18.
19.
Zurück zum Zitat V. V. Adishchev, V. M. Kornev, and L. A. Talzi, Estimation of Maximum Stresses in Closed Cylindrical Vessels during Axisymmetric Explosive Loading [in Russian], Report in Research, No. 6588 83, IGD SB AS USSR, Novosibirsk (1983). V. V. Adishchev, V. M. Kornev, and L. A. Talzi, Estimation of Maximum Stresses in Closed Cylindrical Vessels during Axisymmetric Explosive Loading [in Russian], Report in Research, No. 6588 83, IGD SB AS USSR, Novosibirsk (1983).
20.
Zurück zum Zitat G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for Dyna-2D & Dyna-3D, ARL-TR-1310, Army Research Laboratory (1997). G. Randers-Pehrson and K. A. Bannister, Airblast Loading Model for Dyna-2D & Dyna-3D, ARL-TR-1310, Army Research Laboratory (1997).
21.
Zurück zum Zitat D. W. Hyde, User’s Guide for Microcomputer Program CONWEP, Application of TM5-855-1, Fundamentals of Protective Design for Conventional Weapons (1992). D. W. Hyde, User’s Guide for Microcomputer Program CONWEP, Application of TM5-855-1, Fundamentals of Protective Design for Conventional Weapons (1992).
22.
Zurück zum Zitat N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975). N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).
23.
Zurück zum Zitat S. G. Lekhnitskii, Theory of Anisotropic Body Elasticity [in Russian], Nauka, Moscow (1977). S. G. Lekhnitskii, Theory of Anisotropic Body Elasticity [in Russian], Nauka, Moscow (1977).
24.
Zurück zum Zitat G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Reference on Resistance of Materials [in Russian], Delta, Kiev (2008). G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Reference on Resistance of Materials [in Russian], Delta, Kiev (2008).
25.
Zurück zum Zitat P. P. Lepikhin, V. A. Romaschenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 1. Program description”, Strength Mater., 47, No. 2, 249–256 (2015), https://doi.org/10.1007/s11223-015-9655-x.CrossRef P. P. Lepikhin, V. A. Romaschenko, O. S. Beiner, et al., “A program for numerical calculation of dynamic stress-strain state and strength of hollow multilayer anisotropic cylinders and spheres. Part 1. Program description”, Strength Mater., 47, No. 2, 249–256 (2015), https://​doi.​org/​10.​1007/​s11223-015-9655-x.CrossRef
26.
Zurück zum Zitat M. L. Wilkins, “Calculation of elastic-plastic flow,” in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967), pp. 212–263. M. L. Wilkins, “Calculation of elastic-plastic flow,” in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967), pp. 212–263.
27.
Zurück zum Zitat N. K. Naik, Y. Chandra Sekher, and Sailendra Meduri, “Damage in woven-fabric composites subjected to low-velocity impact”, Compos. Sci. Technol., 60, No. 5, 731–744 (2000).CrossRef N. K. Naik, Y. Chandra Sekher, and Sailendra Meduri, “Damage in woven-fabric composites subjected to low-velocity impact”, Compos. Sci. Technol., 60, No. 5, 731–744 (2000).CrossRef
Metadaten
Titel
Influence of Metal Layer Thickness on the Stress-Strain State and Strength of Metal Composite Cylinders Under Internal Explosion
verfasst von
P. P. Lepikhin
V. A. Romashchenko
O. S. Beiner
S. O. Tarasovska
Publikationsdatum
05.09.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00411-5

Weitere Artikel der Ausgabe 3/2022

Strength of Materials 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.